update Step_3.py and openai compatible script
This commit is contained in:
66
reproduce/Step_1_openai_compatible.py
Normal file
66
reproduce/Step_1_openai_compatible.py
Normal file
@@ -0,0 +1,66 @@
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
from lightrag import LightRAG
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
|
||||
## For Upstage API
|
||||
# please check if embedding_dim=4096 in lightrag.py and llm.py in lightrag direcotry
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"solar-mini",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar",
|
||||
**kwargs
|
||||
)
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar"
|
||||
)
|
||||
## /For Upstage API
|
||||
|
||||
def insert_text(rag, file_path):
|
||||
with open(file_path, mode='r') as f:
|
||||
unique_contexts = json.load(f)
|
||||
|
||||
retries = 0
|
||||
max_retries = 3
|
||||
while retries < max_retries:
|
||||
try:
|
||||
rag.insert(unique_contexts)
|
||||
break
|
||||
except Exception as e:
|
||||
retries += 1
|
||||
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}")
|
||||
time.sleep(10)
|
||||
if retries == max_retries:
|
||||
print("Insertion failed after exceeding the maximum number of retries")
|
||||
|
||||
cls = "mix"
|
||||
WORKING_DIR = f"../{cls}"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=4096,
|
||||
max_token_size=8192,
|
||||
func=embedding_func
|
||||
)
|
||||
)
|
||||
|
||||
insert_text(rag, f"../datasets/unique_contexts/{cls}_unique_contexts.json")
|
Reference in New Issue
Block a user