Merge pull request #1098 from danielaskdd/Fix-pipeline-batch

Fix pipeline bactch process problem
This commit is contained in:
Daniel.y
2025-03-17 04:38:03 +08:00
committed by GitHub

View File

@@ -769,7 +769,6 @@ class LightRAG:
async with pipeline_status_lock: async with pipeline_status_lock:
# Ensure only one worker is processing documents # Ensure only one worker is processing documents
if not pipeline_status.get("busy", False): if not pipeline_status.get("busy", False):
# 先检查是否有需要处理的文档
processing_docs, failed_docs, pending_docs = await asyncio.gather( processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING), self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED), self.doc_status.get_docs_by_status(DocStatus.FAILED),
@@ -781,12 +780,10 @@ class LightRAG:
to_process_docs.update(failed_docs) to_process_docs.update(failed_docs)
to_process_docs.update(pending_docs) to_process_docs.update(pending_docs)
# 如果没有需要处理的文档,直接返回,保留 pipeline_status 中的内容不变
if not to_process_docs: if not to_process_docs:
logger.info("No documents to process") logger.info("No documents to process")
return return
# 有文档需要处理,更新 pipeline_status
pipeline_status.update( pipeline_status.update(
{ {
"busy": True, "busy": True,
@@ -825,7 +822,7 @@ class LightRAG:
for i in range(0, len(to_process_docs), self.max_parallel_insert) for i in range(0, len(to_process_docs), self.max_parallel_insert)
] ]
log_message = f"Number of batches to process: {len(docs_batches)}." log_message = f"Processing {len(to_process_docs)} document(s) in {len(docs_batches)} batches"
logger.info(log_message) logger.info(log_message)
# Update pipeline status with current batch information # Update pipeline status with current batch information
@@ -834,26 +831,16 @@ class LightRAG:
pipeline_status["latest_message"] = log_message pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message) pipeline_status["history_messages"].append(log_message)
batches: list[Any] = [] async def process_document(
# 3. iterate over batches doc_id: str,
for batch_idx, docs_batch in enumerate(docs_batches): status_doc: DocProcessingStatus,
# Update current batch in pipeline status (directly, as it's atomic) split_by_character: str | None,
pipeline_status["cur_batch"] += 1 split_by_character_only: bool,
pipeline_status: dict,
async def batch( pipeline_status_lock: asyncio.Lock,
batch_idx: int,
docs_batch: list[tuple[str, DocProcessingStatus]],
size_batch: int,
) -> None: ) -> None:
log_message = ( """Process single document"""
f"Start processing batch {batch_idx + 1} of {size_batch}." try:
)
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# 4. iterate over batch
for doc_id_processing_status in docs_batch:
doc_id, status_doc = doc_id_processing_status
# Generate chunks from document # Generate chunks from document
chunks: dict[str, Any] = { chunks: dict[str, Any] = {
compute_mdhash_id(dp["content"], prefix="chunk-"): { compute_mdhash_id(dp["content"], prefix="chunk-"): {
@@ -908,7 +895,6 @@ class LightRAG:
full_docs_task, full_docs_task,
text_chunks_task, text_chunks_task,
] ]
try:
await asyncio.gather(*tasks) await asyncio.gather(*tasks)
await self.doc_status.upsert( await self.doc_status.upsert(
{ {
@@ -925,10 +911,9 @@ class LightRAG:
) )
except Exception as e: except Exception as e:
# Log error and update pipeline status # Log error and update pipeline status
error_msg = ( error_msg = f"Failed to process document {doc_id}: {str(e)}"
f"Failed to process document {doc_id}: {str(e)}"
)
logger.error(error_msg) logger.error(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(error_msg) pipeline_status["history_messages"].append(error_msg)
@@ -941,7 +926,6 @@ class LightRAG:
]: ]:
if not task.done(): if not task.done():
task.cancel() task.cancel()
# Update document status to failed # Update document status to failed
await self.doc_status.upsert( await self.doc_status.upsert(
{ {
@@ -956,19 +940,41 @@ class LightRAG:
} }
} }
) )
continue
# 3. iterate over batches
total_batches = len(docs_batches)
for batch_idx, docs_batch in enumerate(docs_batches):
current_batch = batch_idx + 1
log_message = ( log_message = (
f"Completed batch {batch_idx + 1} of {len(docs_batches)}." f"Start processing batch {current_batch} of {total_batches}."
) )
logger.info(log_message) logger.info(log_message)
pipeline_status["cur_batch"] = current_batch
pipeline_status["latest_message"] = log_message pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message) pipeline_status["history_messages"].append(log_message)
batches.append(batch(batch_idx, docs_batch, len(docs_batches))) doc_tasks = []
for doc_id, status_doc in docs_batch:
doc_tasks.append(
process_document(
doc_id,
status_doc,
split_by_character,
split_by_character_only,
pipeline_status,
pipeline_status_lock,
)
)
await asyncio.gather(*batches) # Process documents in one batch parallelly
await asyncio.gather(*doc_tasks)
await self._insert_done() await self._insert_done()
log_message = f"Completed batch {current_batch} of {total_batches}."
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# Check if there's a pending request to process more documents (with lock) # Check if there's a pending request to process more documents (with lock)
has_pending_request = False has_pending_request = False
async with pipeline_status_lock: async with pipeline_status_lock:
@@ -1042,7 +1048,7 @@ class LightRAG:
] ]
await asyncio.gather(*tasks) await asyncio.gather(*tasks)
log_message = "All Insert done" log_message = "In memory DB persist to disk"
logger.info(log_message) logger.info(log_message)
if pipeline_status is not None and pipeline_status_lock is not None: if pipeline_status is not None and pipeline_status_lock is not None: