feat(lightrag): Implement mix search mode combining knowledge graph and vector retrieval
- Add 'mix' mode to QueryParam for hybrid search functionality - Implement mix_kg_vector_query to combine knowledge graph and vector search results - Update LightRAG class to handle 'mix' mode queries - Enhance README with examples and explanations for the new mix search mode - Introduce new prompt structure for generating responses based on combined search results
This commit is contained in:
@@ -1147,3 +1147,195 @@ async def naive_query(
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
async def mix_kg_vector_query(
|
||||
query,
|
||||
knowledge_graph_inst: BaseGraphStorage,
|
||||
entities_vdb: BaseVectorStorage,
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
chunks_vdb: BaseVectorStorage,
|
||||
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
||||
query_param: QueryParam,
|
||||
global_config: dict,
|
||||
hashing_kv: BaseKVStorage = None,
|
||||
) -> str:
|
||||
"""
|
||||
Hybrid retrieval implementation combining knowledge graph and vector search.
|
||||
|
||||
This function performs a hybrid search by:
|
||||
1. Extracting semantic information from knowledge graph
|
||||
2. Retrieving relevant text chunks through vector similarity
|
||||
3. Combining both results for comprehensive answer generation
|
||||
"""
|
||||
# 1. Cache handling
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
args_hash = compute_args_hash("mix", query)
|
||||
cached_response, quantized, min_val, max_val = await handle_cache(
|
||||
hashing_kv, args_hash, query, "mix"
|
||||
)
|
||||
if cached_response is not None:
|
||||
return cached_response
|
||||
|
||||
# 2. Execute knowledge graph and vector searches in parallel
|
||||
async def get_kg_context():
|
||||
try:
|
||||
# Reuse keyword extraction logic from kg_query
|
||||
example_number = global_config["addon_params"].get("example_number", None)
|
||||
if example_number and example_number < len(
|
||||
PROMPTS["keywords_extraction_examples"]
|
||||
):
|
||||
examples = "\n".join(
|
||||
PROMPTS["keywords_extraction_examples"][: int(example_number)]
|
||||
)
|
||||
else:
|
||||
examples = "\n".join(PROMPTS["keywords_extraction_examples"])
|
||||
|
||||
language = global_config["addon_params"].get(
|
||||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||||
)
|
||||
|
||||
# Extract keywords using LLM
|
||||
kw_prompt = PROMPTS["keywords_extraction"].format(
|
||||
query=query, examples=examples, language=language
|
||||
)
|
||||
result = await use_model_func(kw_prompt, keyword_extraction=True)
|
||||
|
||||
match = re.search(r"\{.*\}", result, re.DOTALL)
|
||||
if not match:
|
||||
logger.warning(
|
||||
"No JSON-like structure found in keywords extraction result"
|
||||
)
|
||||
return None
|
||||
|
||||
result = match.group(0)
|
||||
keywords_data = json.loads(result)
|
||||
hl_keywords = keywords_data.get("high_level_keywords", [])
|
||||
ll_keywords = keywords_data.get("low_level_keywords", [])
|
||||
|
||||
if not hl_keywords and not ll_keywords:
|
||||
logger.warning("Both high-level and low-level keywords are empty")
|
||||
return None
|
||||
|
||||
# Convert keyword lists to strings
|
||||
ll_keywords_str = ", ".join(ll_keywords) if ll_keywords else ""
|
||||
hl_keywords_str = ", ".join(hl_keywords) if hl_keywords else ""
|
||||
|
||||
# Set query mode based on available keywords
|
||||
if not ll_keywords_str and not hl_keywords_str:
|
||||
return None
|
||||
elif not ll_keywords_str:
|
||||
query_param.mode = "global"
|
||||
elif not hl_keywords_str:
|
||||
query_param.mode = "local"
|
||||
else:
|
||||
query_param.mode = "hybrid"
|
||||
|
||||
# Build knowledge graph context
|
||||
context = await _build_query_context(
|
||||
[ll_keywords_str, hl_keywords_str],
|
||||
knowledge_graph_inst,
|
||||
entities_vdb,
|
||||
relationships_vdb,
|
||||
text_chunks_db,
|
||||
query_param,
|
||||
)
|
||||
|
||||
return context
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in get_kg_context: {str(e)}")
|
||||
return None
|
||||
|
||||
async def get_vector_context():
|
||||
# Reuse vector search logic from naive_query
|
||||
try:
|
||||
# Reduce top_k for vector search in hybrid mode since we have structured information from KG
|
||||
mix_topk = min(10, query_param.top_k)
|
||||
results = await chunks_vdb.query(query, top_k=mix_topk)
|
||||
if not results:
|
||||
return None
|
||||
|
||||
chunks_ids = [r["id"] for r in results]
|
||||
chunks = await text_chunks_db.get_by_ids(chunks_ids)
|
||||
|
||||
valid_chunks = [
|
||||
chunk for chunk in chunks if chunk is not None and "content" in chunk
|
||||
]
|
||||
|
||||
if not valid_chunks:
|
||||
return None
|
||||
|
||||
maybe_trun_chunks = truncate_list_by_token_size(
|
||||
valid_chunks,
|
||||
key=lambda x: x["content"],
|
||||
max_token_size=query_param.max_token_for_text_unit,
|
||||
)
|
||||
|
||||
if not maybe_trun_chunks:
|
||||
return None
|
||||
|
||||
return "\n--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks])
|
||||
except Exception as e:
|
||||
logger.error(f"Error in get_vector_context: {e}")
|
||||
return None
|
||||
|
||||
# 3. Execute both retrievals in parallel
|
||||
kg_context, vector_context = await asyncio.gather(
|
||||
get_kg_context(), get_vector_context()
|
||||
)
|
||||
|
||||
# 4. Merge contexts
|
||||
if kg_context is None and vector_context is None:
|
||||
return PROMPTS["fail_response"]
|
||||
|
||||
if query_param.only_need_context:
|
||||
return {"kg_context": kg_context, "vector_context": vector_context}
|
||||
|
||||
# 5. Construct hybrid prompt
|
||||
sys_prompt = PROMPTS["mix_rag_response"].format(
|
||||
kg_context=kg_context
|
||||
if kg_context
|
||||
else "No relevant knowledge graph information found",
|
||||
vector_context=vector_context
|
||||
if vector_context
|
||||
else "No relevant text information found",
|
||||
response_type=query_param.response_type,
|
||||
)
|
||||
|
||||
if query_param.only_need_prompt:
|
||||
return sys_prompt
|
||||
|
||||
# 6. Generate response
|
||||
response = await use_model_func(
|
||||
query,
|
||||
system_prompt=sys_prompt,
|
||||
stream=query_param.stream,
|
||||
)
|
||||
|
||||
if isinstance(response, str) and len(response) > len(sys_prompt):
|
||||
response = (
|
||||
response.replace(sys_prompt, "")
|
||||
.replace("user", "")
|
||||
.replace("model", "")
|
||||
.replace(query, "")
|
||||
.replace("<system>", "")
|
||||
.replace("</system>", "")
|
||||
.strip()
|
||||
)
|
||||
|
||||
# 7. Save cache
|
||||
await save_to_cache(
|
||||
hashing_kv,
|
||||
CacheData(
|
||||
args_hash=args_hash,
|
||||
content=response,
|
||||
prompt=query,
|
||||
quantized=quantized,
|
||||
min_val=min_val,
|
||||
max_val=max_val,
|
||||
mode="mix",
|
||||
),
|
||||
)
|
||||
|
||||
return response
|
||||
|
Reference in New Issue
Block a user