Merge pull request #982 from danielaskdd/standalone-logger-setup
Providing setup_logger for standalone LightRAG logger initialization
This commit is contained in:
18
README.md
18
README.md
@@ -106,6 +106,9 @@ import asyncio
|
|||||||
from lightrag import LightRAG, QueryParam
|
from lightrag import LightRAG, QueryParam
|
||||||
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed
|
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed
|
||||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||||
|
from lightrag.utils import setup_logger
|
||||||
|
|
||||||
|
setup_logger("lightrag", level="INFO")
|
||||||
|
|
||||||
async def initialize_rag():
|
async def initialize_rag():
|
||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
@@ -344,6 +347,10 @@ from lightrag.llm.llama_index_impl import llama_index_complete_if_cache, llama_i
|
|||||||
from llama_index.embeddings.openai import OpenAIEmbedding
|
from llama_index.embeddings.openai import OpenAIEmbedding
|
||||||
from llama_index.llms.openai import OpenAI
|
from llama_index.llms.openai import OpenAI
|
||||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||||
|
from lightrag.utils import setup_logger
|
||||||
|
|
||||||
|
# Setup log handler for LightRAG
|
||||||
|
setup_logger("lightrag", level="INFO")
|
||||||
|
|
||||||
async def initialize_rag():
|
async def initialize_rag():
|
||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
@@ -640,6 +647,9 @@ export NEO4J_URI="neo4j://localhost:7687"
|
|||||||
export NEO4J_USERNAME="neo4j"
|
export NEO4J_USERNAME="neo4j"
|
||||||
export NEO4J_PASSWORD="password"
|
export NEO4J_PASSWORD="password"
|
||||||
|
|
||||||
|
# Setup logger for LightRAG
|
||||||
|
setup_logger("lightrag", level="INFO")
|
||||||
|
|
||||||
# When you launch the project be sure to override the default KG: NetworkX
|
# When you launch the project be sure to override the default KG: NetworkX
|
||||||
# by specifying kg="Neo4JStorage".
|
# by specifying kg="Neo4JStorage".
|
||||||
|
|
||||||
@@ -649,8 +659,12 @@ rag = LightRAG(
|
|||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||||
graph_storage="Neo4JStorage", #<-----------override KG default
|
graph_storage="Neo4JStorage", #<-----------override KG default
|
||||||
log_level="DEBUG" #<-----------override log_level default
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Initialize database connections
|
||||||
|
await rag.initialize_storages()
|
||||||
|
# Initialize pipeline status for document processing
|
||||||
|
await initialize_pipeline_status()
|
||||||
```
|
```
|
||||||
see test_neo4j.py for a working example.
|
see test_neo4j.py for a working example.
|
||||||
|
|
||||||
@@ -859,7 +873,6 @@ Valid modes are:
|
|||||||
| **kv\_storage** | `str` | Storage type for documents and text chunks. Supported types: `JsonKVStorage`, `OracleKVStorage` | `JsonKVStorage` |
|
| **kv\_storage** | `str` | Storage type for documents and text chunks. Supported types: `JsonKVStorage`, `OracleKVStorage` | `JsonKVStorage` |
|
||||||
| **vector\_storage** | `str` | Storage type for embedding vectors. Supported types: `NanoVectorDBStorage`, `OracleVectorDBStorage` | `NanoVectorDBStorage` |
|
| **vector\_storage** | `str` | Storage type for embedding vectors. Supported types: `NanoVectorDBStorage`, `OracleVectorDBStorage` | `NanoVectorDBStorage` |
|
||||||
| **graph\_storage** | `str` | Storage type for graph edges and nodes. Supported types: `NetworkXStorage`, `Neo4JStorage`, `OracleGraphStorage` | `NetworkXStorage` |
|
| **graph\_storage** | `str` | Storage type for graph edges and nodes. Supported types: `NetworkXStorage`, `Neo4JStorage`, `OracleGraphStorage` | `NetworkXStorage` |
|
||||||
| **log\_level** | | Log level for application runtime | `logging.DEBUG` |
|
|
||||||
| **chunk\_token\_size** | `int` | Maximum token size per chunk when splitting documents | `1200` |
|
| **chunk\_token\_size** | `int` | Maximum token size per chunk when splitting documents | `1200` |
|
||||||
| **chunk\_overlap\_token\_size** | `int` | Overlap token size between two chunks when splitting documents | `100` |
|
| **chunk\_overlap\_token\_size** | `int` | Overlap token size between two chunks when splitting documents | `100` |
|
||||||
| **tiktoken\_model\_name** | `str` | Model name for the Tiktoken encoder used to calculate token numbers | `gpt-4o-mini` |
|
| **tiktoken\_model\_name** | `str` | Model name for the Tiktoken encoder used to calculate token numbers | `gpt-4o-mini` |
|
||||||
@@ -881,7 +894,6 @@ Valid modes are:
|
|||||||
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese", "entity_types": ["organization", "person", "geo", "event"], "insert_batch_size": 10}`: sets example limit, output language, and batch size for document processing | `example_number: all examples, language: English, insert_batch_size: 10` |
|
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese", "entity_types": ["organization", "person", "geo", "event"], "insert_batch_size": 10}`: sets example limit, output language, and batch size for document processing | `example_number: all examples, language: English, insert_batch_size: 10` |
|
||||||
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
||||||
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
|
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
|
||||||
|**log\_dir** | `str` | Directory to store logs. | `./` |
|
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
@@ -2,12 +2,15 @@
|
|||||||
import os
|
import os
|
||||||
import logging
|
import logging
|
||||||
from lightrag.kg.shared_storage import finalize_share_data
|
from lightrag.kg.shared_storage import finalize_share_data
|
||||||
from lightrag.api.lightrag_server import LightragPathFilter
|
from lightrag.utils import setup_logger
|
||||||
|
|
||||||
# Get log directory path from environment variable
|
# Get log directory path from environment variable
|
||||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||||
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
||||||
|
|
||||||
|
# Ensure log directory exists
|
||||||
|
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
|
||||||
|
|
||||||
# Get log file max size and backup count from environment variables
|
# Get log file max size and backup count from environment variables
|
||||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||||
@@ -108,6 +111,9 @@ def on_starting(server):
|
|||||||
except ImportError:
|
except ImportError:
|
||||||
print("psutil not installed, skipping memory usage reporting")
|
print("psutil not installed, skipping memory usage reporting")
|
||||||
|
|
||||||
|
# Log the location of the LightRAG log file
|
||||||
|
print(f"LightRAG log file: {log_file_path}\n")
|
||||||
|
|
||||||
print("Gunicorn initialization complete, forking workers...\n")
|
print("Gunicorn initialization complete, forking workers...\n")
|
||||||
|
|
||||||
|
|
||||||
@@ -134,51 +140,18 @@ def post_fork(server, worker):
|
|||||||
Executed after a worker has been forked.
|
Executed after a worker has been forked.
|
||||||
This is a good place to set up worker-specific configurations.
|
This is a good place to set up worker-specific configurations.
|
||||||
"""
|
"""
|
||||||
# Configure formatters
|
|
||||||
detailed_formatter = logging.Formatter(
|
|
||||||
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
|
||||||
)
|
|
||||||
simple_formatter = logging.Formatter("%(levelname)s: %(message)s")
|
|
||||||
|
|
||||||
def setup_logger(logger_name: str, level: str = "INFO", add_filter: bool = False):
|
|
||||||
"""Set up a logger with console and file handlers"""
|
|
||||||
logger_instance = logging.getLogger(logger_name)
|
|
||||||
logger_instance.setLevel(level)
|
|
||||||
logger_instance.handlers = [] # Clear existing handlers
|
|
||||||
logger_instance.propagate = False
|
|
||||||
|
|
||||||
# Add console handler
|
|
||||||
console_handler = logging.StreamHandler()
|
|
||||||
console_handler.setFormatter(simple_formatter)
|
|
||||||
console_handler.setLevel(level)
|
|
||||||
logger_instance.addHandler(console_handler)
|
|
||||||
|
|
||||||
# Add file handler
|
|
||||||
file_handler = logging.handlers.RotatingFileHandler(
|
|
||||||
filename=log_file_path,
|
|
||||||
maxBytes=log_max_bytes,
|
|
||||||
backupCount=log_backup_count,
|
|
||||||
encoding="utf-8",
|
|
||||||
)
|
|
||||||
file_handler.setFormatter(detailed_formatter)
|
|
||||||
file_handler.setLevel(level)
|
|
||||||
logger_instance.addHandler(file_handler)
|
|
||||||
|
|
||||||
# Add path filter if requested
|
|
||||||
if add_filter:
|
|
||||||
path_filter = LightragPathFilter()
|
|
||||||
logger_instance.addFilter(path_filter)
|
|
||||||
|
|
||||||
# Set up main loggers
|
# Set up main loggers
|
||||||
log_level = loglevel.upper() if loglevel else "INFO"
|
log_level = loglevel.upper() if loglevel else "INFO"
|
||||||
setup_logger("uvicorn", log_level)
|
setup_logger("uvicorn", log_level, add_filter=False, log_file_path=log_file_path)
|
||||||
setup_logger("uvicorn.access", log_level, add_filter=True)
|
setup_logger(
|
||||||
setup_logger("lightrag", log_level, add_filter=True)
|
"uvicorn.access", log_level, add_filter=True, log_file_path=log_file_path
|
||||||
|
)
|
||||||
|
setup_logger("lightrag", log_level, add_filter=True, log_file_path=log_file_path)
|
||||||
|
|
||||||
# Set up lightrag submodule loggers
|
# Set up lightrag submodule loggers
|
||||||
for name in logging.root.manager.loggerDict:
|
for name in logging.root.manager.loggerDict:
|
||||||
if name.startswith("lightrag."):
|
if name.startswith("lightrag."):
|
||||||
setup_logger(name, log_level, add_filter=True)
|
setup_logger(name, log_level, add_filter=True, log_file_path=log_file_path)
|
||||||
|
|
||||||
# Disable uvicorn.error logger
|
# Disable uvicorn.error logger
|
||||||
uvicorn_error_logger = logging.getLogger("uvicorn.error")
|
uvicorn_error_logger = logging.getLogger("uvicorn.error")
|
||||||
|
@@ -329,7 +329,6 @@ def create_app(args):
|
|||||||
"similarity_threshold": 0.95,
|
"similarity_threshold": 0.95,
|
||||||
"use_llm_check": False,
|
"use_llm_check": False,
|
||||||
},
|
},
|
||||||
log_level=args.log_level,
|
|
||||||
namespace_prefix=args.namespace_prefix,
|
namespace_prefix=args.namespace_prefix,
|
||||||
auto_manage_storages_states=False,
|
auto_manage_storages_states=False,
|
||||||
)
|
)
|
||||||
@@ -359,7 +358,6 @@ def create_app(args):
|
|||||||
"similarity_threshold": 0.95,
|
"similarity_threshold": 0.95,
|
||||||
"use_llm_check": False,
|
"use_llm_check": False,
|
||||||
},
|
},
|
||||||
log_level=args.log_level,
|
|
||||||
namespace_prefix=args.namespace_prefix,
|
namespace_prefix=args.namespace_prefix,
|
||||||
auto_manage_storages_states=False,
|
auto_manage_storages_states=False,
|
||||||
)
|
)
|
||||||
@@ -437,6 +435,9 @@ def configure_logging():
|
|||||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||||
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
||||||
|
|
||||||
|
print(f"\nLightRAG log file: {log_file_path}\n")
|
||||||
|
os.makedirs(os.path.dirname(log_dir), exist_ok=True)
|
||||||
|
|
||||||
# Get log file max size and backup count from environment variables
|
# Get log file max size and backup count from environment variables
|
||||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||||
|
@@ -3,6 +3,7 @@ from __future__ import annotations
|
|||||||
import asyncio
|
import asyncio
|
||||||
import configparser
|
import configparser
|
||||||
import os
|
import os
|
||||||
|
import warnings
|
||||||
from dataclasses import asdict, dataclass, field
|
from dataclasses import asdict, dataclass, field
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from functools import partial
|
from functools import partial
|
||||||
@@ -85,14 +86,10 @@ class LightRAG:
|
|||||||
doc_status_storage: str = field(default="JsonDocStatusStorage")
|
doc_status_storage: str = field(default="JsonDocStatusStorage")
|
||||||
"""Storage type for tracking document processing statuses."""
|
"""Storage type for tracking document processing statuses."""
|
||||||
|
|
||||||
# Logging
|
# Logging (Deprecated, use setup_logger in utils.py instead)
|
||||||
# ---
|
# ---
|
||||||
|
log_level: int | None = field(default=None)
|
||||||
log_level: int = field(default=logger.level)
|
log_file_path: str | None = field(default=None)
|
||||||
"""Logging level for the system (e.g., 'DEBUG', 'INFO', 'WARNING')."""
|
|
||||||
|
|
||||||
log_file_path: str = field(default=os.path.join(os.getcwd(), "lightrag.log"))
|
|
||||||
"""Log file path."""
|
|
||||||
|
|
||||||
# Entity extraction
|
# Entity extraction
|
||||||
# ---
|
# ---
|
||||||
@@ -266,13 +263,30 @@ class LightRAG:
|
|||||||
_storages_status: StoragesStatus = field(default=StoragesStatus.NOT_CREATED)
|
_storages_status: StoragesStatus = field(default=StoragesStatus.NOT_CREATED)
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
os.makedirs(os.path.dirname(self.log_file_path), exist_ok=True)
|
|
||||||
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
|
||||||
|
|
||||||
from lightrag.kg.shared_storage import (
|
from lightrag.kg.shared_storage import (
|
||||||
initialize_share_data,
|
initialize_share_data,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Handle deprecated parameters
|
||||||
|
if self.log_level is not None:
|
||||||
|
warnings.warn(
|
||||||
|
"WARNING: log_level parameter is deprecated, use setup_logger in utils.py instead",
|
||||||
|
UserWarning,
|
||||||
|
stacklevel=2,
|
||||||
|
)
|
||||||
|
if self.log_file_path is not None:
|
||||||
|
warnings.warn(
|
||||||
|
"WARNING: log_file_path parameter is deprecated, use setup_logger in utils.py instead",
|
||||||
|
UserWarning,
|
||||||
|
stacklevel=2,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Remove these attributes to prevent their use
|
||||||
|
if hasattr(self, "log_level"):
|
||||||
|
delattr(self, "log_level")
|
||||||
|
if hasattr(self, "log_file_path"):
|
||||||
|
delattr(self, "log_file_path")
|
||||||
|
|
||||||
initialize_share_data()
|
initialize_share_data()
|
||||||
|
|
||||||
if not os.path.exists(self.working_dir):
|
if not os.path.exists(self.working_dir):
|
||||||
|
@@ -6,6 +6,7 @@ import io
|
|||||||
import csv
|
import csv
|
||||||
import json
|
import json
|
||||||
import logging
|
import logging
|
||||||
|
import logging.handlers
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
@@ -68,6 +69,101 @@ logger.setLevel(logging.INFO)
|
|||||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
|
||||||
|
class LightragPathFilter(logging.Filter):
|
||||||
|
"""Filter for lightrag logger to filter out frequent path access logs"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
# Define paths to be filtered
|
||||||
|
self.filtered_paths = ["/documents", "/health", "/webui/"]
|
||||||
|
|
||||||
|
def filter(self, record):
|
||||||
|
try:
|
||||||
|
# Check if record has the required attributes for an access log
|
||||||
|
if not hasattr(record, "args") or not isinstance(record.args, tuple):
|
||||||
|
return True
|
||||||
|
if len(record.args) < 5:
|
||||||
|
return True
|
||||||
|
|
||||||
|
# Extract method, path and status from the record args
|
||||||
|
method = record.args[1]
|
||||||
|
path = record.args[2]
|
||||||
|
status = record.args[4]
|
||||||
|
|
||||||
|
# Filter out successful GET requests to filtered paths
|
||||||
|
if (
|
||||||
|
method == "GET"
|
||||||
|
and (status == 200 or status == 304)
|
||||||
|
and path in self.filtered_paths
|
||||||
|
):
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
except Exception:
|
||||||
|
# In case of any error, let the message through
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def setup_logger(
|
||||||
|
logger_name: str,
|
||||||
|
level: str = "INFO",
|
||||||
|
add_filter: bool = False,
|
||||||
|
log_file_path: str = None,
|
||||||
|
):
|
||||||
|
"""Set up a logger with console and file handlers
|
||||||
|
|
||||||
|
Args:
|
||||||
|
logger_name: Name of the logger to set up
|
||||||
|
level: Log level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
|
||||||
|
add_filter: Whether to add LightragPathFilter to the logger
|
||||||
|
log_file_path: Path to the log file. If None, will use current directory/lightrag.log
|
||||||
|
"""
|
||||||
|
# Configure formatters
|
||||||
|
detailed_formatter = logging.Formatter(
|
||||||
|
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||||
|
)
|
||||||
|
simple_formatter = logging.Formatter("%(levelname)s: %(message)s")
|
||||||
|
|
||||||
|
# Get log file path
|
||||||
|
if log_file_path is None:
|
||||||
|
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||||
|
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
||||||
|
|
||||||
|
# Ensure log directory exists
|
||||||
|
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
|
||||||
|
|
||||||
|
# Get log file max size and backup count from environment variables
|
||||||
|
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||||
|
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||||
|
|
||||||
|
logger_instance = logging.getLogger(logger_name)
|
||||||
|
logger_instance.setLevel(level)
|
||||||
|
logger_instance.handlers = [] # Clear existing handlers
|
||||||
|
logger_instance.propagate = False
|
||||||
|
|
||||||
|
# Add console handler
|
||||||
|
console_handler = logging.StreamHandler()
|
||||||
|
console_handler.setFormatter(simple_formatter)
|
||||||
|
console_handler.setLevel(level)
|
||||||
|
logger_instance.addHandler(console_handler)
|
||||||
|
|
||||||
|
# Add file handler
|
||||||
|
file_handler = logging.handlers.RotatingFileHandler(
|
||||||
|
filename=log_file_path,
|
||||||
|
maxBytes=log_max_bytes,
|
||||||
|
backupCount=log_backup_count,
|
||||||
|
encoding="utf-8",
|
||||||
|
)
|
||||||
|
file_handler.setFormatter(detailed_formatter)
|
||||||
|
file_handler.setLevel(level)
|
||||||
|
logger_instance.addHandler(file_handler)
|
||||||
|
|
||||||
|
# Add path filter if requested
|
||||||
|
if add_filter:
|
||||||
|
path_filter = LightragPathFilter()
|
||||||
|
logger_instance.addFilter(path_filter)
|
||||||
|
|
||||||
|
|
||||||
class UnlimitedSemaphore:
|
class UnlimitedSemaphore:
|
||||||
"""A context manager that allows unlimited access."""
|
"""A context manager that allows unlimited access."""
|
||||||
|
|
||||||
|
@@ -3,7 +3,7 @@ configparser
|
|||||||
future
|
future
|
||||||
|
|
||||||
# Basic modules
|
# Basic modules
|
||||||
numpy
|
gensim
|
||||||
pipmaster
|
pipmaster
|
||||||
pydantic
|
pydantic
|
||||||
python-dotenv
|
python-dotenv
|
||||||
|
Reference in New Issue
Block a user