diff --git a/README-zh.md b/README-zh.md
index 784fd1f2..94a11b61 100644
--- a/README-zh.md
+++ b/README-zh.md
@@ -410,6 +410,54 @@ if __name__ == "__main__":
+### Token统计功能
+
+ 概述和使用
+
+LightRAG提供了TokenTracker工具来跟踪和管理大模型的token消耗。这个功能对于控制API成本和优化性能特别有用。
+
+#### 使用方法
+
+```python
+from lightrag.utils import TokenTracker
+
+# 创建TokenTracker实例
+token_tracker = TokenTracker()
+
+# 方法1:使用上下文管理器(推荐)
+# 适用于需要自动跟踪token使用的场景
+with token_tracker:
+ result1 = await llm_model_func("你的问题1")
+ result2 = await llm_model_func("你的问题2")
+
+# 方法2:手动添加token使用记录
+# 适用于需要更精细控制token统计的场景
+token_tracker.reset()
+
+rag.insert()
+
+rag.query("你的问题1", param=QueryParam(mode="naive"))
+rag.query("你的问题2", param=QueryParam(mode="mix"))
+
+# 显示总token使用量(包含插入和查询操作)
+print("Token usage:", token_tracker.get_usage())
+```
+
+#### 使用建议
+- 在长会话或批量操作中使用上下文管理器,可以自动跟踪所有token消耗
+- 对于需要分段统计的场景,使用手动模式并适时调用reset()
+- 定期检查token使用情况,有助于及时发现异常消耗
+- 在开发测试阶段积极使用此功能,以便优化生产环境的成本
+
+#### 实际应用示例
+您可以参考以下示例来实现token统计:
+- `examples/lightrag_gemini_track_token_demo.py`:使用Google Gemini模型的token统计示例
+- `examples/lightrag_siliconcloud_track_token_demo.py`:使用SiliconCloud模型的token统计示例
+
+这些示例展示了如何在不同模型和场景下有效地使用TokenTracker功能。
+
+
+
### 对话历史
LightRAG现在通过对话历史功能支持多轮对话。以下是使用方法:
diff --git a/README.md b/README.md
index 6c8861a2..0d04b015 100644
--- a/README.md
+++ b/README.md
@@ -443,6 +443,55 @@ if __name__ == "__main__":
+### Token Usage Tracking
+
+
+ Overview and Usage
+
+LightRAG provides a TokenTracker tool to monitor and manage token consumption by large language models. This feature is particularly useful for controlling API costs and optimizing performance.
+
+#### Usage
+
+```python
+from lightrag.utils import TokenTracker
+
+# Create TokenTracker instance
+token_tracker = TokenTracker()
+
+# Method 1: Using context manager (Recommended)
+# Suitable for scenarios requiring automatic token usage tracking
+with token_tracker:
+ result1 = await llm_model_func("your question 1")
+ result2 = await llm_model_func("your question 2")
+
+# Method 2: Manually adding token usage records
+# Suitable for scenarios requiring more granular control over token statistics
+token_tracker.reset()
+
+rag.insert()
+
+rag.query("your question 1", param=QueryParam(mode="naive"))
+rag.query("your question 2", param=QueryParam(mode="mix"))
+
+# Display total token usage (including insert and query operations)
+print("Token usage:", token_tracker.get_usage())
+```
+
+#### Usage Tips
+- Use context managers for long sessions or batch operations to automatically track all token consumption
+- For scenarios requiring segmented statistics, use manual mode and call reset() when appropriate
+- Regular checking of token usage helps detect abnormal consumption early
+- Actively use this feature during development and testing to optimize production costs
+
+#### Practical Examples
+You can refer to these examples for implementing token tracking:
+- `examples/lightrag_gemini_track_token_demo.py`: Token tracking example using Google Gemini model
+- `examples/lightrag_siliconcloud_track_token_demo.py`: Token tracking example using SiliconCloud model
+
+These examples demonstrate how to effectively use the TokenTracker feature with different models and scenarios.
+
+
+
### Conversation History Support