With a draft for progres_impl
This commit is contained in:
133
examples/lightrag_zhipu_postgres_demo.py
Normal file
133
examples/lightrag_zhipu_postgres_demo.py
Normal file
@@ -0,0 +1,133 @@
|
|||||||
|
import asyncio
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
from lightrag import LightRAG, QueryParam
|
||||||
|
from lightrag.kg.postgres_impl import PostgreSQLDB, PGGraphStorage
|
||||||
|
from lightrag.llm import ollama_embedding, zhipu_complete
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
ROOT_DIR = os.environ.get("ROOT_DIR")
|
||||||
|
WORKING_DIR = f"{ROOT_DIR}/dickens-pg"
|
||||||
|
|
||||||
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||||||
|
|
||||||
|
if not os.path.exists(WORKING_DIR):
|
||||||
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
# AGE
|
||||||
|
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
||||||
|
|
||||||
|
postgres_db = PostgreSQLDB(
|
||||||
|
config={
|
||||||
|
"host": "localhost",
|
||||||
|
"port": 15432,
|
||||||
|
"user": "rag",
|
||||||
|
"password": "rag",
|
||||||
|
"database": "rag",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
await postgres_db.initdb()
|
||||||
|
# Check if PostgreSQL DB tables exist, if not, tables will be created
|
||||||
|
await postgres_db.check_tables()
|
||||||
|
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=zhipu_complete,
|
||||||
|
llm_model_name="glm-4-flashx",
|
||||||
|
llm_model_max_async=4,
|
||||||
|
llm_model_max_token_size=32768,
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=768,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=lambda texts: ollama_embedding(
|
||||||
|
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||||
|
),
|
||||||
|
),
|
||||||
|
kv_storage="PGKVStorage",
|
||||||
|
doc_status_storage="PGDocStatusStorage",
|
||||||
|
graph_storage="PGGraphStorage",
|
||||||
|
vector_storage="PGVectorStorage"
|
||||||
|
)
|
||||||
|
# Set the KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||||
|
rag.doc_status.db = postgres_db
|
||||||
|
rag.full_docs.db = postgres_db
|
||||||
|
rag.text_chunks.db = postgres_db
|
||||||
|
rag.llm_response_cache.db = postgres_db
|
||||||
|
rag.key_string_value_json_storage_cls.db = postgres_db
|
||||||
|
rag.chunks_vdb.db = postgres_db
|
||||||
|
rag.relationships_vdb.db = postgres_db
|
||||||
|
rag.entities_vdb.db = postgres_db
|
||||||
|
rag.graph_storage_cls.db = postgres_db
|
||||||
|
rag.chunk_entity_relation_graph.db = postgres_db
|
||||||
|
await rag.chunk_entity_relation_graph.check_graph_exists()
|
||||||
|
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
||||||
|
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
||||||
|
|
||||||
|
with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f:
|
||||||
|
await rag.ainsert(f.read())
|
||||||
|
|
||||||
|
print("==== Trying to test the rag queries ====")
|
||||||
|
print("**** Start Naive Query ****")
|
||||||
|
start_time = time.time()
|
||||||
|
# Perform naive search
|
||||||
|
print(
|
||||||
|
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||||
|
)
|
||||||
|
print(f"Naive Query Time: {time.time() - start_time} seconds")
|
||||||
|
# Perform local search
|
||||||
|
print("**** Start Local Query ****")
|
||||||
|
start_time = time.time()
|
||||||
|
print(
|
||||||
|
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||||
|
)
|
||||||
|
print(f"Local Query Time: {time.time() - start_time} seconds")
|
||||||
|
# Perform global search
|
||||||
|
print("**** Start Global Query ****")
|
||||||
|
start_time = time.time()
|
||||||
|
print(
|
||||||
|
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||||
|
)
|
||||||
|
print(f"Global Query Time: {time.time() - start_time}")
|
||||||
|
# Perform hybrid search
|
||||||
|
print("**** Start Hybrid Query ****")
|
||||||
|
print(
|
||||||
|
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||||
|
)
|
||||||
|
print(f"Hybrid Query Time: {time.time() - start_time} seconds")
|
||||||
|
|
||||||
|
print("**** Start Stream Query ****")
|
||||||
|
start_time = time.time()
|
||||||
|
# stream response
|
||||||
|
resp = await rag.aquery(
|
||||||
|
"What are the top themes in this story?",
|
||||||
|
param=QueryParam(mode="hybrid", stream=True),
|
||||||
|
)
|
||||||
|
print(f"Stream Query Time: {time.time() - start_time} seconds")
|
||||||
|
print("**** Done Stream Query ****")
|
||||||
|
|
||||||
|
if inspect.isasyncgen(resp):
|
||||||
|
asyncio.run(print_stream(resp))
|
||||||
|
else:
|
||||||
|
print(resp)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main())
|
||||||
|
|
||||||
|
|
||||||
|
async def print_stream(stream):
|
||||||
|
async for chunk in stream:
|
||||||
|
print(chunk, end="", flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
1162
lightrag/kg/postgres_impl.py
Normal file
1162
lightrag/kg/postgres_impl.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -83,8 +83,12 @@ ChromaVectorDBStorage = lazy_external_import(".kg.chroma_impl", "ChromaVectorDBS
|
|||||||
TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
|
TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
|
||||||
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
|
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
|
||||||
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
|
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
|
||||||
|
PGKVStorage = lazy_external_import(".kg.postgres_impl", "PGKVStorage")
|
||||||
|
PGVectorStorage = lazy_external_import(".kg.postgres_impl", "PGVectorStorage")
|
||||||
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
|
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
|
||||||
|
PGGraphStorage = lazy_external_import(".kg.postgres_impl", "PGGraphStorage")
|
||||||
GremlinStorage = lazy_external_import(".kg.gremlin_impl", "GremlinStorage")
|
GremlinStorage = lazy_external_import(".kg.gremlin_impl", "GremlinStorage")
|
||||||
|
PGDocStatusStorage = lazy_external_import(".kg.postgres_impl", "PGDocStatusStorage")
|
||||||
|
|
||||||
|
|
||||||
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||||
@@ -295,6 +299,10 @@ class LightRAG:
|
|||||||
"Neo4JStorage": Neo4JStorage,
|
"Neo4JStorage": Neo4JStorage,
|
||||||
"OracleGraphStorage": OracleGraphStorage,
|
"OracleGraphStorage": OracleGraphStorage,
|
||||||
"AGEStorage": AGEStorage,
|
"AGEStorage": AGEStorage,
|
||||||
|
"PGGraphStorage": PGGraphStorage,
|
||||||
|
"PGKVStorage": PGKVStorage,
|
||||||
|
"PGDocStatusStorage": PGDocStatusStorage,
|
||||||
|
"PGVectorStorage": PGVectorStorage,
|
||||||
"TiDBGraphStorage": TiDBGraphStorage,
|
"TiDBGraphStorage": TiDBGraphStorage,
|
||||||
"GremlinStorage": GremlinStorage,
|
"GremlinStorage": GremlinStorage,
|
||||||
# "ArangoDBStorage": ArangoDBStorage
|
# "ArangoDBStorage": ArangoDBStorage
|
||||||
|
Reference in New Issue
Block a user