Merge pull request #880 from danielaskdd/refactor-api-server
Refactor api server by split it to smaller files
This commit is contained in:
3
.gitignore
vendored
3
.gitignore
vendored
@@ -60,3 +60,6 @@ dickens/
|
|||||||
book.txt
|
book.txt
|
||||||
lightrag-dev/
|
lightrag-dev/
|
||||||
gui/
|
gui/
|
||||||
|
|
||||||
|
# unit-test files
|
||||||
|
test_*
|
||||||
|
File diff suppressed because it is too large
Load Diff
10
lightrag/api/routers/__init__.py
Normal file
10
lightrag/api/routers/__init__.py
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
"""
|
||||||
|
This module contains all the routers for the LightRAG API.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from .document_routes import router as document_router
|
||||||
|
from .query_routes import router as query_router
|
||||||
|
from .graph_routes import router as graph_router
|
||||||
|
from .ollama_api import OllamaAPI
|
||||||
|
|
||||||
|
__all__ = ["document_router", "query_router", "graph_router", "OllamaAPI"]
|
770
lightrag/api/routers/document_routes.py
Normal file
770
lightrag/api/routers/document_routes.py
Normal file
@@ -0,0 +1,770 @@
|
|||||||
|
"""
|
||||||
|
This module contains all document-related routes for the LightRAG API.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import aiofiles
|
||||||
|
import shutil
|
||||||
|
import traceback
|
||||||
|
import pipmaster as pm
|
||||||
|
from datetime import datetime
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Any
|
||||||
|
|
||||||
|
from fastapi import APIRouter, BackgroundTasks, Depends, File, HTTPException, UploadFile
|
||||||
|
from pydantic import BaseModel, Field, field_validator
|
||||||
|
|
||||||
|
from lightrag import LightRAG
|
||||||
|
from lightrag.base import DocProcessingStatus, DocStatus
|
||||||
|
from ..utils_api import get_api_key_dependency
|
||||||
|
|
||||||
|
|
||||||
|
router = APIRouter(prefix="/documents", tags=["documents"])
|
||||||
|
|
||||||
|
# Global progress tracker
|
||||||
|
scan_progress: Dict = {
|
||||||
|
"is_scanning": False,
|
||||||
|
"current_file": "",
|
||||||
|
"indexed_count": 0,
|
||||||
|
"total_files": 0,
|
||||||
|
"progress": 0,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Lock for thread-safe operations
|
||||||
|
progress_lock = asyncio.Lock()
|
||||||
|
|
||||||
|
# Temporary file prefix
|
||||||
|
temp_prefix = "__tmp__"
|
||||||
|
|
||||||
|
|
||||||
|
class InsertTextRequest(BaseModel):
|
||||||
|
text: str = Field(
|
||||||
|
min_length=1,
|
||||||
|
description="The text to insert",
|
||||||
|
)
|
||||||
|
|
||||||
|
@field_validator("text", mode="after")
|
||||||
|
@classmethod
|
||||||
|
def strip_after(cls, text: str) -> str:
|
||||||
|
return text.strip()
|
||||||
|
|
||||||
|
|
||||||
|
class InsertTextsRequest(BaseModel):
|
||||||
|
texts: list[str] = Field(
|
||||||
|
min_length=1,
|
||||||
|
description="The texts to insert",
|
||||||
|
)
|
||||||
|
|
||||||
|
@field_validator("texts", mode="after")
|
||||||
|
@classmethod
|
||||||
|
def strip_after(cls, texts: list[str]) -> list[str]:
|
||||||
|
return [text.strip() for text in texts]
|
||||||
|
|
||||||
|
|
||||||
|
class InsertResponse(BaseModel):
|
||||||
|
status: str = Field(description="Status of the operation")
|
||||||
|
message: str = Field(description="Message describing the operation result")
|
||||||
|
|
||||||
|
|
||||||
|
class DocStatusResponse(BaseModel):
|
||||||
|
@staticmethod
|
||||||
|
def format_datetime(dt: Any) -> Optional[str]:
|
||||||
|
if dt is None:
|
||||||
|
return None
|
||||||
|
if isinstance(dt, str):
|
||||||
|
return dt
|
||||||
|
return dt.isoformat()
|
||||||
|
|
||||||
|
"""Response model for document status
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
id: Document identifier
|
||||||
|
content_summary: Summary of document content
|
||||||
|
content_length: Length of document content
|
||||||
|
status: Current processing status
|
||||||
|
created_at: Creation timestamp (ISO format string)
|
||||||
|
updated_at: Last update timestamp (ISO format string)
|
||||||
|
chunks_count: Number of chunks (optional)
|
||||||
|
error: Error message if any (optional)
|
||||||
|
metadata: Additional metadata (optional)
|
||||||
|
"""
|
||||||
|
|
||||||
|
id: str
|
||||||
|
content_summary: str
|
||||||
|
content_length: int
|
||||||
|
status: DocStatus
|
||||||
|
created_at: str
|
||||||
|
updated_at: str
|
||||||
|
chunks_count: Optional[int] = None
|
||||||
|
error: Optional[str] = None
|
||||||
|
metadata: Optional[dict[str, Any]] = None
|
||||||
|
|
||||||
|
|
||||||
|
class DocsStatusesResponse(BaseModel):
|
||||||
|
statuses: Dict[DocStatus, List[DocStatusResponse]] = {}
|
||||||
|
|
||||||
|
|
||||||
|
class DocumentManager:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
input_dir: str,
|
||||||
|
supported_extensions: tuple = (
|
||||||
|
".txt",
|
||||||
|
".md",
|
||||||
|
".pdf",
|
||||||
|
".docx",
|
||||||
|
".pptx",
|
||||||
|
".xlsx",
|
||||||
|
".rtf", # Rich Text Format
|
||||||
|
".odt", # OpenDocument Text
|
||||||
|
".tex", # LaTeX
|
||||||
|
".epub", # Electronic Publication
|
||||||
|
".html", # HyperText Markup Language
|
||||||
|
".htm", # HyperText Markup Language
|
||||||
|
".csv", # Comma-Separated Values
|
||||||
|
".json", # JavaScript Object Notation
|
||||||
|
".xml", # eXtensible Markup Language
|
||||||
|
".yaml", # YAML Ain't Markup Language
|
||||||
|
".yml", # YAML
|
||||||
|
".log", # Log files
|
||||||
|
".conf", # Configuration files
|
||||||
|
".ini", # Initialization files
|
||||||
|
".properties", # Java properties files
|
||||||
|
".sql", # SQL scripts
|
||||||
|
".bat", # Batch files
|
||||||
|
".sh", # Shell scripts
|
||||||
|
".c", # C source code
|
||||||
|
".cpp", # C++ source code
|
||||||
|
".py", # Python source code
|
||||||
|
".java", # Java source code
|
||||||
|
".js", # JavaScript source code
|
||||||
|
".ts", # TypeScript source code
|
||||||
|
".swift", # Swift source code
|
||||||
|
".go", # Go source code
|
||||||
|
".rb", # Ruby source code
|
||||||
|
".php", # PHP source code
|
||||||
|
".css", # Cascading Style Sheets
|
||||||
|
".scss", # Sassy CSS
|
||||||
|
".less", # LESS CSS
|
||||||
|
),
|
||||||
|
):
|
||||||
|
self.input_dir = Path(input_dir)
|
||||||
|
self.supported_extensions = supported_extensions
|
||||||
|
self.indexed_files = set()
|
||||||
|
|
||||||
|
# Create input directory if it doesn't exist
|
||||||
|
self.input_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
def scan_directory_for_new_files(self) -> List[Path]:
|
||||||
|
"""Scan input directory for new files"""
|
||||||
|
new_files = []
|
||||||
|
for ext in self.supported_extensions:
|
||||||
|
logging.info(f"Scanning for {ext} files in {self.input_dir}")
|
||||||
|
for file_path in self.input_dir.rglob(f"*{ext}"):
|
||||||
|
if file_path not in self.indexed_files:
|
||||||
|
new_files.append(file_path)
|
||||||
|
return new_files
|
||||||
|
|
||||||
|
# def scan_directory(self) -> List[Path]:
|
||||||
|
# new_files = []
|
||||||
|
# for ext in self.supported_extensions:
|
||||||
|
# for file_path in self.input_dir.rglob(f"*{ext}"):
|
||||||
|
# new_files.append(file_path)
|
||||||
|
# return new_files
|
||||||
|
|
||||||
|
def mark_as_indexed(self, file_path: Path):
|
||||||
|
self.indexed_files.add(file_path)
|
||||||
|
|
||||||
|
def is_supported_file(self, filename: str) -> bool:
|
||||||
|
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
||||||
|
|
||||||
|
|
||||||
|
async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||||
|
"""Add a file to the queue for processing
|
||||||
|
|
||||||
|
Args:
|
||||||
|
rag: LightRAG instance
|
||||||
|
file_path: Path to the saved file
|
||||||
|
Returns:
|
||||||
|
bool: True if the file was successfully enqueued, False otherwise
|
||||||
|
"""
|
||||||
|
|
||||||
|
try:
|
||||||
|
content = ""
|
||||||
|
ext = file_path.suffix.lower()
|
||||||
|
|
||||||
|
file = None
|
||||||
|
async with aiofiles.open(file_path, "rb") as f:
|
||||||
|
file = await f.read()
|
||||||
|
|
||||||
|
# Process based on file type
|
||||||
|
match ext:
|
||||||
|
case (
|
||||||
|
".txt"
|
||||||
|
| ".md"
|
||||||
|
| ".html"
|
||||||
|
| ".htm"
|
||||||
|
| ".tex"
|
||||||
|
| ".json"
|
||||||
|
| ".xml"
|
||||||
|
| ".yaml"
|
||||||
|
| ".yml"
|
||||||
|
| ".rtf"
|
||||||
|
| ".odt"
|
||||||
|
| ".epub"
|
||||||
|
| ".csv"
|
||||||
|
| ".log"
|
||||||
|
| ".conf"
|
||||||
|
| ".ini"
|
||||||
|
| ".properties"
|
||||||
|
| ".sql"
|
||||||
|
| ".bat"
|
||||||
|
| ".sh"
|
||||||
|
| ".c"
|
||||||
|
| ".cpp"
|
||||||
|
| ".py"
|
||||||
|
| ".java"
|
||||||
|
| ".js"
|
||||||
|
| ".ts"
|
||||||
|
| ".swift"
|
||||||
|
| ".go"
|
||||||
|
| ".rb"
|
||||||
|
| ".php"
|
||||||
|
| ".css"
|
||||||
|
| ".scss"
|
||||||
|
| ".less"
|
||||||
|
):
|
||||||
|
content = file.decode("utf-8")
|
||||||
|
case ".pdf":
|
||||||
|
if not pm.is_installed("pypdf2"):
|
||||||
|
pm.install("pypdf2")
|
||||||
|
from PyPDF2 import PdfReader # type: ignore
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
pdf_file = BytesIO(file)
|
||||||
|
reader = PdfReader(pdf_file)
|
||||||
|
for page in reader.pages:
|
||||||
|
content += page.extract_text() + "\n"
|
||||||
|
case ".docx":
|
||||||
|
if not pm.is_installed("docx"):
|
||||||
|
pm.install("docx")
|
||||||
|
from docx import Document
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
docx_file = BytesIO(file)
|
||||||
|
doc = Document(docx_file)
|
||||||
|
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
||||||
|
case ".pptx":
|
||||||
|
if not pm.is_installed("pptx"):
|
||||||
|
pm.install("pptx")
|
||||||
|
from pptx import Presentation
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
pptx_file = BytesIO(file)
|
||||||
|
prs = Presentation(pptx_file)
|
||||||
|
for slide in prs.slides:
|
||||||
|
for shape in slide.shapes:
|
||||||
|
if hasattr(shape, "text"):
|
||||||
|
content += shape.text + "\n"
|
||||||
|
case ".xlsx":
|
||||||
|
if not pm.is_installed("openpyxl"):
|
||||||
|
pm.install("openpyxl")
|
||||||
|
from openpyxl import load_workbook
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
xlsx_file = BytesIO(file)
|
||||||
|
wb = load_workbook(xlsx_file)
|
||||||
|
for sheet in wb:
|
||||||
|
content += f"Sheet: {sheet.title}\n"
|
||||||
|
for row in sheet.iter_rows(values_only=True):
|
||||||
|
content += (
|
||||||
|
"\t".join(
|
||||||
|
str(cell) if cell is not None else "" for cell in row
|
||||||
|
)
|
||||||
|
+ "\n"
|
||||||
|
)
|
||||||
|
content += "\n"
|
||||||
|
case _:
|
||||||
|
logging.error(
|
||||||
|
f"Unsupported file type: {file_path.name} (extension {ext})"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Insert into the RAG queue
|
||||||
|
if content:
|
||||||
|
await rag.apipeline_enqueue_documents(content)
|
||||||
|
logging.info(f"Successfully fetched and enqueued file: {file_path.name}")
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
logging.error(f"No content could be extracted from file: {file_path.name}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error processing or enqueueing file {file_path.name}: {str(e)}")
|
||||||
|
logging.error(traceback.format_exc())
|
||||||
|
finally:
|
||||||
|
if file_path.name.startswith(temp_prefix):
|
||||||
|
try:
|
||||||
|
file_path.unlink()
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error deleting file {file_path}: {str(e)}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
async def pipeline_index_file(rag: LightRAG, file_path: Path):
|
||||||
|
"""Index a file
|
||||||
|
|
||||||
|
Args:
|
||||||
|
rag: LightRAG instance
|
||||||
|
file_path: Path to the saved file
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
if await pipeline_enqueue_file(rag, file_path):
|
||||||
|
await rag.apipeline_process_enqueue_documents()
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error indexing file {file_path.name}: {str(e)}")
|
||||||
|
logging.error(traceback.format_exc())
|
||||||
|
|
||||||
|
|
||||||
|
async def pipeline_index_files(rag: LightRAG, file_paths: List[Path]):
|
||||||
|
"""Index multiple files concurrently
|
||||||
|
|
||||||
|
Args:
|
||||||
|
rag: LightRAG instance
|
||||||
|
file_paths: Paths to the files to index
|
||||||
|
"""
|
||||||
|
if not file_paths:
|
||||||
|
return
|
||||||
|
try:
|
||||||
|
enqueued = False
|
||||||
|
|
||||||
|
if len(file_paths) == 1:
|
||||||
|
enqueued = await pipeline_enqueue_file(rag, file_paths[0])
|
||||||
|
else:
|
||||||
|
tasks = [pipeline_enqueue_file(rag, path) for path in file_paths]
|
||||||
|
enqueued = any(await asyncio.gather(*tasks))
|
||||||
|
|
||||||
|
if enqueued:
|
||||||
|
await rag.apipeline_process_enqueue_documents()
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error indexing files: {str(e)}")
|
||||||
|
logging.error(traceback.format_exc())
|
||||||
|
|
||||||
|
|
||||||
|
async def pipeline_index_texts(rag: LightRAG, texts: List[str]):
|
||||||
|
"""Index a list of texts
|
||||||
|
|
||||||
|
Args:
|
||||||
|
rag: LightRAG instance
|
||||||
|
texts: The texts to index
|
||||||
|
"""
|
||||||
|
if not texts:
|
||||||
|
return
|
||||||
|
await rag.apipeline_enqueue_documents(texts)
|
||||||
|
await rag.apipeline_process_enqueue_documents()
|
||||||
|
|
||||||
|
|
||||||
|
async def save_temp_file(input_dir: Path, file: UploadFile = File(...)) -> Path:
|
||||||
|
"""Save the uploaded file to a temporary location
|
||||||
|
|
||||||
|
Args:
|
||||||
|
file: The uploaded file
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Path: The path to the saved file
|
||||||
|
"""
|
||||||
|
# Generate unique filename to avoid conflicts
|
||||||
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||||
|
unique_filename = f"{temp_prefix}{timestamp}_{file.filename}"
|
||||||
|
|
||||||
|
# Create a temporary file to save the uploaded content
|
||||||
|
temp_path = input_dir / "temp" / unique_filename
|
||||||
|
temp_path.parent.mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
# Save the file
|
||||||
|
with open(temp_path, "wb") as buffer:
|
||||||
|
shutil.copyfileobj(file.file, buffer)
|
||||||
|
return temp_path
|
||||||
|
|
||||||
|
|
||||||
|
async def run_scanning_process(rag: LightRAG, doc_manager: DocumentManager):
|
||||||
|
"""Background task to scan and index documents"""
|
||||||
|
try:
|
||||||
|
new_files = doc_manager.scan_directory_for_new_files()
|
||||||
|
scan_progress["total_files"] = len(new_files)
|
||||||
|
|
||||||
|
logging.info(f"Found {len(new_files)} new files to index.")
|
||||||
|
for file_path in new_files:
|
||||||
|
try:
|
||||||
|
async with progress_lock:
|
||||||
|
scan_progress["current_file"] = os.path.basename(file_path)
|
||||||
|
|
||||||
|
await pipeline_index_file(rag, file_path)
|
||||||
|
|
||||||
|
async with progress_lock:
|
||||||
|
scan_progress["indexed_count"] += 1
|
||||||
|
scan_progress["progress"] = (
|
||||||
|
scan_progress["indexed_count"] / scan_progress["total_files"]
|
||||||
|
) * 100
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error during scanning process: {str(e)}")
|
||||||
|
finally:
|
||||||
|
async with progress_lock:
|
||||||
|
scan_progress["is_scanning"] = False
|
||||||
|
|
||||||
|
|
||||||
|
def create_document_routes(
|
||||||
|
rag: LightRAG, doc_manager: DocumentManager, api_key: Optional[str] = None
|
||||||
|
):
|
||||||
|
optional_api_key = get_api_key_dependency(api_key)
|
||||||
|
|
||||||
|
@router.post("/scan", dependencies=[Depends(optional_api_key)])
|
||||||
|
async def scan_for_new_documents(background_tasks: BackgroundTasks):
|
||||||
|
"""
|
||||||
|
Trigger the scanning process for new documents.
|
||||||
|
|
||||||
|
This endpoint initiates a background task that scans the input directory for new documents
|
||||||
|
and processes them. If a scanning process is already running, it returns a status indicating
|
||||||
|
that fact.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: A dictionary containing the scanning status
|
||||||
|
"""
|
||||||
|
async with progress_lock:
|
||||||
|
if scan_progress["is_scanning"]:
|
||||||
|
return {"status": "already_scanning"}
|
||||||
|
|
||||||
|
scan_progress["is_scanning"] = True
|
||||||
|
scan_progress["indexed_count"] = 0
|
||||||
|
scan_progress["progress"] = 0
|
||||||
|
|
||||||
|
# Start the scanning process in the background
|
||||||
|
background_tasks.add_task(run_scanning_process, rag, doc_manager)
|
||||||
|
return {"status": "scanning_started"}
|
||||||
|
|
||||||
|
@router.get("/scan-progress")
|
||||||
|
async def get_scan_progress():
|
||||||
|
"""
|
||||||
|
Get the current progress of the document scanning process.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: A dictionary containing the current scanning progress information including:
|
||||||
|
- is_scanning: Whether a scan is currently in progress
|
||||||
|
- current_file: The file currently being processed
|
||||||
|
- indexed_count: Number of files indexed so far
|
||||||
|
- total_files: Total number of files to process
|
||||||
|
- progress: Percentage of completion
|
||||||
|
"""
|
||||||
|
async with progress_lock:
|
||||||
|
return scan_progress
|
||||||
|
|
||||||
|
@router.post("/upload", dependencies=[Depends(optional_api_key)])
|
||||||
|
async def upload_to_input_dir(
|
||||||
|
background_tasks: BackgroundTasks, file: UploadFile = File(...)
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Upload a file to the input directory and index it.
|
||||||
|
|
||||||
|
This API endpoint accepts a file through an HTTP POST request, checks if the
|
||||||
|
uploaded file is of a supported type, saves it in the specified input directory,
|
||||||
|
indexes it for retrieval, and returns a success status with relevant details.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
background_tasks: FastAPI BackgroundTasks for async processing
|
||||||
|
file (UploadFile): The file to be uploaded. It must have an allowed extension.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
InsertResponse: A response object containing the upload status and a message.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: If the file type is not supported (400) or other errors occur (500).
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
if not doc_manager.is_supported_file(file.filename):
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
||||||
|
)
|
||||||
|
|
||||||
|
file_path = doc_manager.input_dir / file.filename
|
||||||
|
with open(file_path, "wb") as buffer:
|
||||||
|
shutil.copyfileobj(file.file, buffer)
|
||||||
|
|
||||||
|
# Add to background tasks
|
||||||
|
background_tasks.add_task(pipeline_index_file, rag, file_path)
|
||||||
|
|
||||||
|
return InsertResponse(
|
||||||
|
status="success",
|
||||||
|
message=f"File '{file.filename}' uploaded successfully. Processing will continue in background.",
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error /documents/upload: {file.filename}: {str(e)}")
|
||||||
|
logging.error(traceback.format_exc())
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/text", response_model=InsertResponse, dependencies=[Depends(optional_api_key)]
|
||||||
|
)
|
||||||
|
async def insert_text(
|
||||||
|
request: InsertTextRequest, background_tasks: BackgroundTasks
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Insert text into the RAG system.
|
||||||
|
|
||||||
|
This endpoint allows you to insert text data into the RAG system for later retrieval
|
||||||
|
and use in generating responses.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
request (InsertTextRequest): The request body containing the text to be inserted.
|
||||||
|
background_tasks: FastAPI BackgroundTasks for async processing
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
InsertResponse: A response object containing the status of the operation.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: If an error occurs during text processing (500).
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
background_tasks.add_task(pipeline_index_texts, rag, [request.text])
|
||||||
|
return InsertResponse(
|
||||||
|
status="success",
|
||||||
|
message="Text successfully received. Processing will continue in background.",
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error /documents/text: {str(e)}")
|
||||||
|
logging.error(traceback.format_exc())
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/texts",
|
||||||
|
response_model=InsertResponse,
|
||||||
|
dependencies=[Depends(optional_api_key)],
|
||||||
|
)
|
||||||
|
async def insert_texts(
|
||||||
|
request: InsertTextsRequest, background_tasks: BackgroundTasks
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Insert multiple texts into the RAG system.
|
||||||
|
|
||||||
|
This endpoint allows you to insert multiple text entries into the RAG system
|
||||||
|
in a single request.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
request (InsertTextsRequest): The request body containing the list of texts.
|
||||||
|
background_tasks: FastAPI BackgroundTasks for async processing
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
InsertResponse: A response object containing the status of the operation.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: If an error occurs during text processing (500).
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
background_tasks.add_task(pipeline_index_texts, rag, request.texts)
|
||||||
|
return InsertResponse(
|
||||||
|
status="success",
|
||||||
|
message="Text successfully received. Processing will continue in background.",
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error /documents/text: {str(e)}")
|
||||||
|
logging.error(traceback.format_exc())
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/file", response_model=InsertResponse, dependencies=[Depends(optional_api_key)]
|
||||||
|
)
|
||||||
|
async def insert_file(
|
||||||
|
background_tasks: BackgroundTasks, file: UploadFile = File(...)
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Insert a file directly into the RAG system.
|
||||||
|
|
||||||
|
This endpoint accepts a file upload and processes it for inclusion in the RAG system.
|
||||||
|
The file is saved temporarily and processed in the background.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
background_tasks: FastAPI BackgroundTasks for async processing
|
||||||
|
file (UploadFile): The file to be processed
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
InsertResponse: A response object containing the status of the operation.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: If the file type is not supported (400) or other errors occur (500).
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
if not doc_manager.is_supported_file(file.filename):
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
||||||
|
)
|
||||||
|
|
||||||
|
temp_path = await save_temp_file(doc_manager.input_dir, file)
|
||||||
|
|
||||||
|
# Add to background tasks
|
||||||
|
background_tasks.add_task(pipeline_index_file, rag, temp_path)
|
||||||
|
|
||||||
|
return InsertResponse(
|
||||||
|
status="success",
|
||||||
|
message=f"File '{file.filename}' saved successfully. Processing will continue in background.",
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error /documents/file: {str(e)}")
|
||||||
|
logging.error(traceback.format_exc())
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/file_batch",
|
||||||
|
response_model=InsertResponse,
|
||||||
|
dependencies=[Depends(optional_api_key)],
|
||||||
|
)
|
||||||
|
async def insert_batch(
|
||||||
|
background_tasks: BackgroundTasks, files: List[UploadFile] = File(...)
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Process multiple files in batch mode.
|
||||||
|
|
||||||
|
This endpoint allows uploading and processing multiple files simultaneously.
|
||||||
|
It handles partial successes and provides detailed feedback about failed files.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
background_tasks: FastAPI BackgroundTasks for async processing
|
||||||
|
files (List[UploadFile]): List of files to process
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
InsertResponse: A response object containing:
|
||||||
|
- status: "success", "partial_success", or "failure"
|
||||||
|
- message: Detailed information about the operation results
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: If an error occurs during processing (500).
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
inserted_count = 0
|
||||||
|
failed_files = []
|
||||||
|
temp_files = []
|
||||||
|
|
||||||
|
for file in files:
|
||||||
|
if doc_manager.is_supported_file(file.filename):
|
||||||
|
# Create a temporary file to save the uploaded content
|
||||||
|
temp_files.append(await save_temp_file(doc_manager.input_dir, file))
|
||||||
|
inserted_count += 1
|
||||||
|
else:
|
||||||
|
failed_files.append(f"{file.filename} (unsupported type)")
|
||||||
|
|
||||||
|
if temp_files:
|
||||||
|
background_tasks.add_task(pipeline_index_files, rag, temp_files)
|
||||||
|
|
||||||
|
# Prepare status message
|
||||||
|
if inserted_count == len(files):
|
||||||
|
status = "success"
|
||||||
|
status_message = f"Successfully inserted all {inserted_count} documents"
|
||||||
|
elif inserted_count > 0:
|
||||||
|
status = "partial_success"
|
||||||
|
status_message = f"Successfully inserted {inserted_count} out of {len(files)} documents"
|
||||||
|
if failed_files:
|
||||||
|
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||||
|
else:
|
||||||
|
status = "failure"
|
||||||
|
status_message = "No documents were successfully inserted"
|
||||||
|
if failed_files:
|
||||||
|
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||||
|
|
||||||
|
return InsertResponse(status=status, message=status_message)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error /documents/batch: {str(e)}")
|
||||||
|
logging.error(traceback.format_exc())
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
@router.delete(
|
||||||
|
"", response_model=InsertResponse, dependencies=[Depends(optional_api_key)]
|
||||||
|
)
|
||||||
|
async def clear_documents():
|
||||||
|
"""
|
||||||
|
Clear all documents from the RAG system.
|
||||||
|
|
||||||
|
This endpoint deletes all text chunks, entities vector database, and relationships
|
||||||
|
vector database, effectively clearing all documents from the RAG system.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
InsertResponse: A response object containing the status and message.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: If an error occurs during the clearing process (500).
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
rag.text_chunks = []
|
||||||
|
rag.entities_vdb = None
|
||||||
|
rag.relationships_vdb = None
|
||||||
|
return InsertResponse(
|
||||||
|
status="success", message="All documents cleared successfully"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error DELETE /documents: {str(e)}")
|
||||||
|
logging.error(traceback.format_exc())
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
@router.get("", dependencies=[Depends(optional_api_key)])
|
||||||
|
async def documents() -> DocsStatusesResponse:
|
||||||
|
"""
|
||||||
|
Get the status of all documents in the system.
|
||||||
|
|
||||||
|
This endpoint retrieves the current status of all documents, grouped by their
|
||||||
|
processing status (PENDING, PROCESSING, PROCESSED, FAILED).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
DocsStatusesResponse: A response object containing a dictionary where keys are
|
||||||
|
DocStatus values and values are lists of DocStatusResponse
|
||||||
|
objects representing documents in each status category.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: If an error occurs while retrieving document statuses (500).
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
statuses = (
|
||||||
|
DocStatus.PENDING,
|
||||||
|
DocStatus.PROCESSING,
|
||||||
|
DocStatus.PROCESSED,
|
||||||
|
DocStatus.FAILED,
|
||||||
|
)
|
||||||
|
|
||||||
|
tasks = [rag.get_docs_by_status(status) for status in statuses]
|
||||||
|
results: List[Dict[str, DocProcessingStatus]] = await asyncio.gather(*tasks)
|
||||||
|
|
||||||
|
response = DocsStatusesResponse()
|
||||||
|
|
||||||
|
for idx, result in enumerate(results):
|
||||||
|
status = statuses[idx]
|
||||||
|
for doc_id, doc_status in result.items():
|
||||||
|
if status not in response.statuses:
|
||||||
|
response.statuses[status] = []
|
||||||
|
response.statuses[status].append(
|
||||||
|
DocStatusResponse(
|
||||||
|
id=doc_id,
|
||||||
|
content_summary=doc_status.content_summary,
|
||||||
|
content_length=doc_status.content_length,
|
||||||
|
status=doc_status.status,
|
||||||
|
created_at=DocStatusResponse.format_datetime(
|
||||||
|
doc_status.created_at
|
||||||
|
),
|
||||||
|
updated_at=DocStatusResponse.format_datetime(
|
||||||
|
doc_status.updated_at
|
||||||
|
),
|
||||||
|
chunks_count=doc_status.chunks_count,
|
||||||
|
error=doc_status.error,
|
||||||
|
metadata=doc_status.metadata,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return response
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error GET /documents: {str(e)}")
|
||||||
|
logging.error(traceback.format_exc())
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
return router
|
27
lightrag/api/routers/graph_routes.py
Normal file
27
lightrag/api/routers/graph_routes.py
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
"""
|
||||||
|
This module contains all graph-related routes for the LightRAG API.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from fastapi import APIRouter, Depends
|
||||||
|
|
||||||
|
from ..utils_api import get_api_key_dependency
|
||||||
|
|
||||||
|
router = APIRouter(tags=["graph"])
|
||||||
|
|
||||||
|
|
||||||
|
def create_graph_routes(rag, api_key: Optional[str] = None):
|
||||||
|
optional_api_key = get_api_key_dependency(api_key)
|
||||||
|
|
||||||
|
@router.get("/graph/label/list", dependencies=[Depends(optional_api_key)])
|
||||||
|
async def get_graph_labels():
|
||||||
|
"""Get all graph labels"""
|
||||||
|
return await rag.get_graph_labels()
|
||||||
|
|
||||||
|
@router.get("/graphs", dependencies=[Depends(optional_api_key)])
|
||||||
|
async def get_knowledge_graph(label: str):
|
||||||
|
"""Get knowledge graph for a specific label"""
|
||||||
|
return await rag.get_knowledge_graph(nodel_label=label, max_depth=100)
|
||||||
|
|
||||||
|
return router
|
@@ -5,31 +5,13 @@ import logging
|
|||||||
import time
|
import time
|
||||||
import json
|
import json
|
||||||
import re
|
import re
|
||||||
import os
|
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from fastapi.responses import StreamingResponse
|
from fastapi.responses import StreamingResponse
|
||||||
import asyncio
|
import asyncio
|
||||||
from ascii_colors import trace_exception
|
from ascii_colors import trace_exception
|
||||||
from lightrag import LightRAG, QueryParam
|
from lightrag import LightRAG, QueryParam
|
||||||
from lightrag.utils import encode_string_by_tiktoken
|
from lightrag.utils import encode_string_by_tiktoken
|
||||||
from dotenv import load_dotenv
|
from ..utils_api import ollama_server_infos
|
||||||
|
|
||||||
|
|
||||||
# Load environment variables
|
|
||||||
load_dotenv(override=True)
|
|
||||||
|
|
||||||
|
|
||||||
class OllamaServerInfos:
|
|
||||||
# Constants for emulated Ollama model information
|
|
||||||
LIGHTRAG_NAME = "lightrag"
|
|
||||||
LIGHTRAG_TAG = os.getenv("OLLAMA_EMULATING_MODEL_TAG", "latest")
|
|
||||||
LIGHTRAG_MODEL = f"{LIGHTRAG_NAME}:{LIGHTRAG_TAG}"
|
|
||||||
LIGHTRAG_SIZE = 7365960935 # it's a dummy value
|
|
||||||
LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z"
|
|
||||||
LIGHTRAG_DIGEST = "sha256:lightrag"
|
|
||||||
|
|
||||||
|
|
||||||
ollama_server_infos = OllamaServerInfos()
|
|
||||||
|
|
||||||
|
|
||||||
# query mode according to query prefix (bypass is not LightRAG quer mode)
|
# query mode according to query prefix (bypass is not LightRAG quer mode)
|
||||||
@@ -144,7 +126,7 @@ class OllamaAPI:
|
|||||||
self.rag = rag
|
self.rag = rag
|
||||||
self.ollama_server_infos = ollama_server_infos
|
self.ollama_server_infos = ollama_server_infos
|
||||||
self.top_k = top_k
|
self.top_k = top_k
|
||||||
self.router = APIRouter()
|
self.router = APIRouter(tags=["ollama"])
|
||||||
self.setup_routes()
|
self.setup_routes()
|
||||||
|
|
||||||
def setup_routes(self):
|
def setup_routes(self):
|
229
lightrag/api/routers/query_routes.py
Normal file
229
lightrag/api/routers/query_routes.py
Normal file
@@ -0,0 +1,229 @@
|
|||||||
|
"""
|
||||||
|
This module contains all query-related routes for the LightRAG API.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
from typing import Any, Dict, List, Literal, Optional
|
||||||
|
|
||||||
|
from fastapi import APIRouter, Depends, HTTPException
|
||||||
|
from lightrag.base import QueryParam
|
||||||
|
from ..utils_api import get_api_key_dependency
|
||||||
|
from pydantic import BaseModel, Field, field_validator
|
||||||
|
|
||||||
|
from ascii_colors import trace_exception
|
||||||
|
|
||||||
|
router = APIRouter(tags=["query"])
|
||||||
|
|
||||||
|
|
||||||
|
class QueryRequest(BaseModel):
|
||||||
|
query: str = Field(
|
||||||
|
min_length=1,
|
||||||
|
description="The query text",
|
||||||
|
)
|
||||||
|
|
||||||
|
mode: Literal["local", "global", "hybrid", "naive", "mix"] = Field(
|
||||||
|
default="hybrid",
|
||||||
|
description="Query mode",
|
||||||
|
)
|
||||||
|
|
||||||
|
only_need_context: Optional[bool] = Field(
|
||||||
|
default=None,
|
||||||
|
description="If True, only returns the retrieved context without generating a response.",
|
||||||
|
)
|
||||||
|
|
||||||
|
only_need_prompt: Optional[bool] = Field(
|
||||||
|
default=None,
|
||||||
|
description="If True, only returns the generated prompt without producing a response.",
|
||||||
|
)
|
||||||
|
|
||||||
|
response_type: Optional[str] = Field(
|
||||||
|
min_length=1,
|
||||||
|
default=None,
|
||||||
|
description="Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'.",
|
||||||
|
)
|
||||||
|
|
||||||
|
top_k: Optional[int] = Field(
|
||||||
|
ge=1,
|
||||||
|
default=None,
|
||||||
|
description="Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode.",
|
||||||
|
)
|
||||||
|
|
||||||
|
max_token_for_text_unit: Optional[int] = Field(
|
||||||
|
gt=1,
|
||||||
|
default=None,
|
||||||
|
description="Maximum number of tokens allowed for each retrieved text chunk.",
|
||||||
|
)
|
||||||
|
|
||||||
|
max_token_for_global_context: Optional[int] = Field(
|
||||||
|
gt=1,
|
||||||
|
default=None,
|
||||||
|
description="Maximum number of tokens allocated for relationship descriptions in global retrieval.",
|
||||||
|
)
|
||||||
|
|
||||||
|
max_token_for_local_context: Optional[int] = Field(
|
||||||
|
gt=1,
|
||||||
|
default=None,
|
||||||
|
description="Maximum number of tokens allocated for entity descriptions in local retrieval.",
|
||||||
|
)
|
||||||
|
|
||||||
|
hl_keywords: Optional[List[str]] = Field(
|
||||||
|
default=None,
|
||||||
|
description="List of high-level keywords to prioritize in retrieval.",
|
||||||
|
)
|
||||||
|
|
||||||
|
ll_keywords: Optional[List[str]] = Field(
|
||||||
|
default=None,
|
||||||
|
description="List of low-level keywords to refine retrieval focus.",
|
||||||
|
)
|
||||||
|
|
||||||
|
conversation_history: Optional[List[Dict[str, Any]]] = Field(
|
||||||
|
default=None,
|
||||||
|
description="Stores past conversation history to maintain context. Format: [{'role': 'user/assistant', 'content': 'message'}].",
|
||||||
|
)
|
||||||
|
|
||||||
|
history_turns: Optional[int] = Field(
|
||||||
|
ge=0,
|
||||||
|
default=None,
|
||||||
|
description="Number of complete conversation turns (user-assistant pairs) to consider in the response context.",
|
||||||
|
)
|
||||||
|
|
||||||
|
@field_validator("query", mode="after")
|
||||||
|
@classmethod
|
||||||
|
def query_strip_after(cls, query: str) -> str:
|
||||||
|
return query.strip()
|
||||||
|
|
||||||
|
@field_validator("hl_keywords", mode="after")
|
||||||
|
@classmethod
|
||||||
|
def hl_keywords_strip_after(cls, hl_keywords: List[str] | None) -> List[str] | None:
|
||||||
|
if hl_keywords is None:
|
||||||
|
return None
|
||||||
|
return [keyword.strip() for keyword in hl_keywords]
|
||||||
|
|
||||||
|
@field_validator("ll_keywords", mode="after")
|
||||||
|
@classmethod
|
||||||
|
def ll_keywords_strip_after(cls, ll_keywords: List[str] | None) -> List[str] | None:
|
||||||
|
if ll_keywords is None:
|
||||||
|
return None
|
||||||
|
return [keyword.strip() for keyword in ll_keywords]
|
||||||
|
|
||||||
|
@field_validator("conversation_history", mode="after")
|
||||||
|
@classmethod
|
||||||
|
def conversation_history_role_check(
|
||||||
|
cls, conversation_history: List[Dict[str, Any]] | None
|
||||||
|
) -> List[Dict[str, Any]] | None:
|
||||||
|
if conversation_history is None:
|
||||||
|
return None
|
||||||
|
for msg in conversation_history:
|
||||||
|
if "role" not in msg or msg["role"] not in {"user", "assistant"}:
|
||||||
|
raise ValueError(
|
||||||
|
"Each message must have a 'role' key with value 'user' or 'assistant'."
|
||||||
|
)
|
||||||
|
return conversation_history
|
||||||
|
|
||||||
|
def to_query_params(self, is_stream: bool) -> "QueryParam":
|
||||||
|
"""Converts a QueryRequest instance into a QueryParam instance."""
|
||||||
|
# Use Pydantic's `.model_dump(exclude_none=True)` to remove None values automatically
|
||||||
|
request_data = self.model_dump(exclude_none=True, exclude={"query"})
|
||||||
|
|
||||||
|
# Ensure `mode` and `stream` are set explicitly
|
||||||
|
param = QueryParam(**request_data)
|
||||||
|
param.stream = is_stream
|
||||||
|
return param
|
||||||
|
|
||||||
|
|
||||||
|
class QueryResponse(BaseModel):
|
||||||
|
response: str = Field(
|
||||||
|
description="The generated response",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def create_query_routes(rag, api_key: Optional[str] = None, top_k: int = 60):
|
||||||
|
optional_api_key = get_api_key_dependency(api_key)
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
|
||||||
|
)
|
||||||
|
async def query_text(request: QueryRequest):
|
||||||
|
"""
|
||||||
|
Handle a POST request at the /query endpoint to process user queries using RAG capabilities.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
request (QueryRequest): The request object containing the query parameters.
|
||||||
|
Returns:
|
||||||
|
QueryResponse: A Pydantic model containing the result of the query processing.
|
||||||
|
If a string is returned (e.g., cache hit), it's directly returned.
|
||||||
|
Otherwise, an async generator may be used to build the response.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: Raised when an error occurs during the request handling process,
|
||||||
|
with status code 500 and detail containing the exception message.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
param = request.to_query_params(False)
|
||||||
|
if param.top_k is None:
|
||||||
|
param.top_k = top_k
|
||||||
|
response = await rag.aquery(request.query, param=param)
|
||||||
|
|
||||||
|
# If response is a string (e.g. cache hit), return directly
|
||||||
|
if isinstance(response, str):
|
||||||
|
return QueryResponse(response=response)
|
||||||
|
|
||||||
|
if isinstance(response, dict):
|
||||||
|
result = json.dumps(response, indent=2)
|
||||||
|
return QueryResponse(response=result)
|
||||||
|
else:
|
||||||
|
return QueryResponse(response=str(response))
|
||||||
|
except Exception as e:
|
||||||
|
trace_exception(e)
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
@router.post("/query/stream", dependencies=[Depends(optional_api_key)])
|
||||||
|
async def query_text_stream(request: QueryRequest):
|
||||||
|
"""
|
||||||
|
This endpoint performs a retrieval-augmented generation (RAG) query and streams the response.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
request (QueryRequest): The request object containing the query parameters.
|
||||||
|
optional_api_key (Optional[str], optional): An optional API key for authentication. Defaults to None.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
StreamingResponse: A streaming response containing the RAG query results.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
param = request.to_query_params(True)
|
||||||
|
if param.top_k is None:
|
||||||
|
param.top_k = top_k
|
||||||
|
response = await rag.aquery(request.query, param=param)
|
||||||
|
|
||||||
|
from fastapi.responses import StreamingResponse
|
||||||
|
|
||||||
|
async def stream_generator():
|
||||||
|
if isinstance(response, str):
|
||||||
|
# If it's a string, send it all at once
|
||||||
|
yield f"{json.dumps({'response': response})}\n"
|
||||||
|
else:
|
||||||
|
# If it's an async generator, send chunks one by one
|
||||||
|
try:
|
||||||
|
async for chunk in response:
|
||||||
|
if chunk: # Only send non-empty content
|
||||||
|
yield f"{json.dumps({'response': chunk})}\n"
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Streaming error: {str(e)}")
|
||||||
|
yield f"{json.dumps({'error': str(e)})}\n"
|
||||||
|
|
||||||
|
return StreamingResponse(
|
||||||
|
stream_generator(),
|
||||||
|
media_type="application/x-ndjson",
|
||||||
|
headers={
|
||||||
|
"Cache-Control": "no-cache",
|
||||||
|
"Connection": "keep-alive",
|
||||||
|
"Content-Type": "application/x-ndjson",
|
||||||
|
"X-Accel-Buffering": "no", # Ensure proper handling of streaming response when proxied by Nginx
|
||||||
|
},
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
trace_exception(e)
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
return router
|
554
lightrag/api/utils_api.py
Normal file
554
lightrag/api/utils_api.py
Normal file
@@ -0,0 +1,554 @@
|
|||||||
|
"""
|
||||||
|
Utility functions for the LightRAG API.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
from typing import Optional
|
||||||
|
import sys
|
||||||
|
from ascii_colors import ASCIIColors
|
||||||
|
from lightrag.api import __api_version__
|
||||||
|
from fastapi import HTTPException, Security
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from fastapi.security import APIKeyHeader
|
||||||
|
from starlette.status import HTTP_403_FORBIDDEN
|
||||||
|
|
||||||
|
# Load environment variables
|
||||||
|
load_dotenv(override=True)
|
||||||
|
|
||||||
|
|
||||||
|
class OllamaServerInfos:
|
||||||
|
# Constants for emulated Ollama model information
|
||||||
|
LIGHTRAG_NAME = "lightrag"
|
||||||
|
LIGHTRAG_TAG = os.getenv("OLLAMA_EMULATING_MODEL_TAG", "latest")
|
||||||
|
LIGHTRAG_MODEL = f"{LIGHTRAG_NAME}:{LIGHTRAG_TAG}"
|
||||||
|
LIGHTRAG_SIZE = 7365960935 # it's a dummy value
|
||||||
|
LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z"
|
||||||
|
LIGHTRAG_DIGEST = "sha256:lightrag"
|
||||||
|
|
||||||
|
|
||||||
|
ollama_server_infos = OllamaServerInfos()
|
||||||
|
|
||||||
|
|
||||||
|
def get_api_key_dependency(api_key: Optional[str]):
|
||||||
|
"""
|
||||||
|
Create an API key dependency for route protection.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
api_key (Optional[str]): The API key to validate against.
|
||||||
|
If None, no authentication is required.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Callable: A dependency function that validates the API key.
|
||||||
|
"""
|
||||||
|
if not api_key:
|
||||||
|
# If no API key is configured, return a dummy dependency that always succeeds
|
||||||
|
async def no_auth():
|
||||||
|
return None
|
||||||
|
|
||||||
|
return no_auth
|
||||||
|
|
||||||
|
# If API key is configured, use proper authentication
|
||||||
|
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
|
||||||
|
|
||||||
|
async def api_key_auth(
|
||||||
|
api_key_header_value: Optional[str] = Security(api_key_header),
|
||||||
|
):
|
||||||
|
if not api_key_header_value:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
|
||||||
|
)
|
||||||
|
if api_key_header_value != api_key:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
|
||||||
|
)
|
||||||
|
return api_key_header_value
|
||||||
|
|
||||||
|
return api_key_auth
|
||||||
|
|
||||||
|
|
||||||
|
class DefaultRAGStorageConfig:
|
||||||
|
KV_STORAGE = "JsonKVStorage"
|
||||||
|
VECTOR_STORAGE = "NanoVectorDBStorage"
|
||||||
|
GRAPH_STORAGE = "NetworkXStorage"
|
||||||
|
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
|
||||||
|
|
||||||
|
|
||||||
|
def get_default_host(binding_type: str) -> str:
|
||||||
|
default_hosts = {
|
||||||
|
"ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
|
||||||
|
"lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
|
||||||
|
"azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
|
||||||
|
"openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
|
||||||
|
}
|
||||||
|
return default_hosts.get(
|
||||||
|
binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
|
||||||
|
) # fallback to ollama if unknown
|
||||||
|
|
||||||
|
|
||||||
|
def get_env_value(env_key: str, default: any, value_type: type = str) -> any:
|
||||||
|
"""
|
||||||
|
Get value from environment variable with type conversion
|
||||||
|
|
||||||
|
Args:
|
||||||
|
env_key (str): Environment variable key
|
||||||
|
default (any): Default value if env variable is not set
|
||||||
|
value_type (type): Type to convert the value to
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
any: Converted value from environment or default
|
||||||
|
"""
|
||||||
|
value = os.getenv(env_key)
|
||||||
|
if value is None:
|
||||||
|
return default
|
||||||
|
|
||||||
|
if value_type is bool:
|
||||||
|
return value.lower() in ("true", "1", "yes", "t", "on")
|
||||||
|
try:
|
||||||
|
return value_type(value)
|
||||||
|
except ValueError:
|
||||||
|
return default
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args() -> argparse.Namespace:
|
||||||
|
"""
|
||||||
|
Parse command line arguments with environment variable fallback
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
argparse.Namespace: Parsed arguments
|
||||||
|
"""
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="LightRAG FastAPI Server with separate working and input directories"
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--kv-storage",
|
||||||
|
default=get_env_value(
|
||||||
|
"LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE
|
||||||
|
),
|
||||||
|
help=f"KV storage implementation (default: {DefaultRAGStorageConfig.KV_STORAGE})",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--doc-status-storage",
|
||||||
|
default=get_env_value(
|
||||||
|
"LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE
|
||||||
|
),
|
||||||
|
help=f"Document status storage implementation (default: {DefaultRAGStorageConfig.DOC_STATUS_STORAGE})",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--graph-storage",
|
||||||
|
default=get_env_value(
|
||||||
|
"LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE
|
||||||
|
),
|
||||||
|
help=f"Graph storage implementation (default: {DefaultRAGStorageConfig.GRAPH_STORAGE})",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--vector-storage",
|
||||||
|
default=get_env_value(
|
||||||
|
"LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE
|
||||||
|
),
|
||||||
|
help=f"Vector storage implementation (default: {DefaultRAGStorageConfig.VECTOR_STORAGE})",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Bindings configuration
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-binding",
|
||||||
|
default=get_env_value("LLM_BINDING", "ollama"),
|
||||||
|
help="LLM binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-binding",
|
||||||
|
default=get_env_value("EMBEDDING_BINDING", "ollama"),
|
||||||
|
help="Embedding binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Server configuration
|
||||||
|
parser.add_argument(
|
||||||
|
"--host",
|
||||||
|
default=get_env_value("HOST", "0.0.0.0"),
|
||||||
|
help="Server host (default: from env or 0.0.0.0)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--port",
|
||||||
|
type=int,
|
||||||
|
default=get_env_value("PORT", 9621, int),
|
||||||
|
help="Server port (default: from env or 9621)",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Directory configuration
|
||||||
|
parser.add_argument(
|
||||||
|
"--working-dir",
|
||||||
|
default=get_env_value("WORKING_DIR", "./rag_storage"),
|
||||||
|
help="Working directory for RAG storage (default: from env or ./rag_storage)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--input-dir",
|
||||||
|
default=get_env_value("INPUT_DIR", "./inputs"),
|
||||||
|
help="Directory containing input documents (default: from env or ./inputs)",
|
||||||
|
)
|
||||||
|
|
||||||
|
# LLM Model configuration
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-binding-host",
|
||||||
|
default=get_env_value("LLM_BINDING_HOST", None),
|
||||||
|
help="LLM server host URL. If not provided, defaults based on llm-binding:\n"
|
||||||
|
+ "- ollama: http://localhost:11434\n"
|
||||||
|
+ "- lollms: http://localhost:9600\n"
|
||||||
|
+ "- openai: https://api.openai.com/v1",
|
||||||
|
)
|
||||||
|
|
||||||
|
default_llm_api_key = get_env_value("LLM_BINDING_API_KEY", None)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-binding-api-key",
|
||||||
|
default=default_llm_api_key,
|
||||||
|
help="llm server API key (default: from env or empty string)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-model",
|
||||||
|
default=get_env_value("LLM_MODEL", "mistral-nemo:latest"),
|
||||||
|
help="LLM model name (default: from env or mistral-nemo:latest)",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Embedding model configuration
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-binding-host",
|
||||||
|
default=get_env_value("EMBEDDING_BINDING_HOST", None),
|
||||||
|
help="Embedding server host URL. If not provided, defaults based on embedding-binding:\n"
|
||||||
|
+ "- ollama: http://localhost:11434\n"
|
||||||
|
+ "- lollms: http://localhost:9600\n"
|
||||||
|
+ "- openai: https://api.openai.com/v1",
|
||||||
|
)
|
||||||
|
|
||||||
|
default_embedding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-binding-api-key",
|
||||||
|
default=default_embedding_api_key,
|
||||||
|
help="embedding server API key (default: from env or empty string)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-model",
|
||||||
|
default=get_env_value("EMBEDDING_MODEL", "bge-m3:latest"),
|
||||||
|
help="Embedding model name (default: from env or bge-m3:latest)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--chunk_size",
|
||||||
|
default=get_env_value("CHUNK_SIZE", 1200),
|
||||||
|
help="chunk chunk size default 1200",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--chunk_overlap_size",
|
||||||
|
default=get_env_value("CHUNK_OVERLAP_SIZE", 100),
|
||||||
|
help="chunk overlap size default 100",
|
||||||
|
)
|
||||||
|
|
||||||
|
def timeout_type(value):
|
||||||
|
if value is None or value == "None":
|
||||||
|
return None
|
||||||
|
return int(value)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--timeout",
|
||||||
|
default=get_env_value("TIMEOUT", None, timeout_type),
|
||||||
|
type=timeout_type,
|
||||||
|
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
|
||||||
|
)
|
||||||
|
|
||||||
|
# RAG configuration
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-async",
|
||||||
|
type=int,
|
||||||
|
default=get_env_value("MAX_ASYNC", 4, int),
|
||||||
|
help="Maximum async operations (default: from env or 4)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-tokens",
|
||||||
|
type=int,
|
||||||
|
default=get_env_value("MAX_TOKENS", 32768, int),
|
||||||
|
help="Maximum token size (default: from env or 32768)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-dim",
|
||||||
|
type=int,
|
||||||
|
default=get_env_value("EMBEDDING_DIM", 1024, int),
|
||||||
|
help="Embedding dimensions (default: from env or 1024)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-embed-tokens",
|
||||||
|
type=int,
|
||||||
|
default=get_env_value("MAX_EMBED_TOKENS", 8192, int),
|
||||||
|
help="Maximum embedding token size (default: from env or 8192)",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Logging configuration
|
||||||
|
parser.add_argument(
|
||||||
|
"--log-level",
|
||||||
|
default=get_env_value("LOG_LEVEL", "INFO"),
|
||||||
|
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
||||||
|
help="Logging level (default: from env or INFO)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--key",
|
||||||
|
type=str,
|
||||||
|
default=get_env_value("LIGHTRAG_API_KEY", None),
|
||||||
|
help="API key for authentication. This protects lightrag server against unauthorized access",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Optional https parameters
|
||||||
|
parser.add_argument(
|
||||||
|
"--ssl",
|
||||||
|
action="store_true",
|
||||||
|
default=get_env_value("SSL", False, bool),
|
||||||
|
help="Enable HTTPS (default: from env or False)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--ssl-certfile",
|
||||||
|
default=get_env_value("SSL_CERTFILE", None),
|
||||||
|
help="Path to SSL certificate file (required if --ssl is enabled)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--ssl-keyfile",
|
||||||
|
default=get_env_value("SSL_KEYFILE", None),
|
||||||
|
help="Path to SSL private key file (required if --ssl is enabled)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--auto-scan-at-startup",
|
||||||
|
action="store_true",
|
||||||
|
default=False,
|
||||||
|
help="Enable automatic scanning when the program starts",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--history-turns",
|
||||||
|
type=int,
|
||||||
|
default=get_env_value("HISTORY_TURNS", 3, int),
|
||||||
|
help="Number of conversation history turns to include (default: from env or 3)",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Search parameters
|
||||||
|
parser.add_argument(
|
||||||
|
"--top-k",
|
||||||
|
type=int,
|
||||||
|
default=get_env_value("TOP_K", 60, int),
|
||||||
|
help="Number of most similar results to return (default: from env or 60)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--cosine-threshold",
|
||||||
|
type=float,
|
||||||
|
default=get_env_value("COSINE_THRESHOLD", 0.2, float),
|
||||||
|
help="Cosine similarity threshold (default: from env or 0.4)",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Ollama model name
|
||||||
|
parser.add_argument(
|
||||||
|
"--simulated-model-name",
|
||||||
|
type=str,
|
||||||
|
default=get_env_value(
|
||||||
|
"SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL
|
||||||
|
),
|
||||||
|
help="Number of conversation history turns to include (default: from env or 3)",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Namespace
|
||||||
|
parser.add_argument(
|
||||||
|
"--namespace-prefix",
|
||||||
|
type=str,
|
||||||
|
default=get_env_value("NAMESPACE_PREFIX", ""),
|
||||||
|
help="Prefix of the namespace",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--verbose",
|
||||||
|
type=bool,
|
||||||
|
default=get_env_value("VERBOSE", False, bool),
|
||||||
|
help="Verbose debug output(default: from env or false)",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# convert relative path to absolute path
|
||||||
|
args.working_dir = os.path.abspath(args.working_dir)
|
||||||
|
args.input_dir = os.path.abspath(args.input_dir)
|
||||||
|
|
||||||
|
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
|
||||||
|
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def display_splash_screen(args: argparse.Namespace) -> None:
|
||||||
|
"""
|
||||||
|
Display a colorful splash screen showing LightRAG server configuration
|
||||||
|
|
||||||
|
Args:
|
||||||
|
args: Parsed command line arguments
|
||||||
|
"""
|
||||||
|
# Banner
|
||||||
|
ASCIIColors.cyan(f"""
|
||||||
|
╔══════════════════════════════════════════════════════════════╗
|
||||||
|
║ 🚀 LightRAG Server v{__api_version__} ║
|
||||||
|
║ Fast, Lightweight RAG Server Implementation ║
|
||||||
|
╚══════════════════════════════════════════════════════════════╝
|
||||||
|
""")
|
||||||
|
|
||||||
|
# Server Configuration
|
||||||
|
ASCIIColors.magenta("\n📡 Server Configuration:")
|
||||||
|
ASCIIColors.white(" ├─ Host: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.host}")
|
||||||
|
ASCIIColors.white(" ├─ Port: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.port}")
|
||||||
|
ASCIIColors.white(" ├─ CORS Origins: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{os.getenv('CORS_ORIGINS', '*')}")
|
||||||
|
ASCIIColors.white(" ├─ SSL Enabled: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.ssl}")
|
||||||
|
ASCIIColors.white(" └─ API Key: ", end="")
|
||||||
|
ASCIIColors.yellow("Set" if args.key else "Not Set")
|
||||||
|
if args.ssl:
|
||||||
|
ASCIIColors.white(" ├─ SSL Cert: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.ssl_certfile}")
|
||||||
|
ASCIIColors.white(" └─ SSL Key: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.ssl_keyfile}")
|
||||||
|
|
||||||
|
# Directory Configuration
|
||||||
|
ASCIIColors.magenta("\n📂 Directory Configuration:")
|
||||||
|
ASCIIColors.white(" ├─ Working Directory: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.working_dir}")
|
||||||
|
ASCIIColors.white(" └─ Input Directory: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.input_dir}")
|
||||||
|
|
||||||
|
# LLM Configuration
|
||||||
|
ASCIIColors.magenta("\n🤖 LLM Configuration:")
|
||||||
|
ASCIIColors.white(" ├─ Binding: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.llm_binding}")
|
||||||
|
ASCIIColors.white(" ├─ Host: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.llm_binding_host}")
|
||||||
|
ASCIIColors.white(" └─ Model: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.llm_model}")
|
||||||
|
|
||||||
|
# Embedding Configuration
|
||||||
|
ASCIIColors.magenta("\n📊 Embedding Configuration:")
|
||||||
|
ASCIIColors.white(" ├─ Binding: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.embedding_binding}")
|
||||||
|
ASCIIColors.white(" ├─ Host: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.embedding_binding_host}")
|
||||||
|
ASCIIColors.white(" ├─ Model: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.embedding_model}")
|
||||||
|
ASCIIColors.white(" └─ Dimensions: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.embedding_dim}")
|
||||||
|
|
||||||
|
# RAG Configuration
|
||||||
|
ASCIIColors.magenta("\n⚙️ RAG Configuration:")
|
||||||
|
ASCIIColors.white(" ├─ Max Async Operations: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.max_async}")
|
||||||
|
ASCIIColors.white(" ├─ Max Tokens: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.max_tokens}")
|
||||||
|
ASCIIColors.white(" ├─ Max Embed Tokens: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.max_embed_tokens}")
|
||||||
|
ASCIIColors.white(" ├─ Chunk Size: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.chunk_size}")
|
||||||
|
ASCIIColors.white(" ├─ Chunk Overlap Size: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
|
||||||
|
ASCIIColors.white(" ├─ History Turns: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.history_turns}")
|
||||||
|
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.cosine_threshold}")
|
||||||
|
ASCIIColors.white(" └─ Top-K: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.top_k}")
|
||||||
|
|
||||||
|
# System Configuration
|
||||||
|
ASCIIColors.magenta("\n💾 Storage Configuration:")
|
||||||
|
ASCIIColors.white(" ├─ KV Storage: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.kv_storage}")
|
||||||
|
ASCIIColors.white(" ├─ Vector Storage: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.vector_storage}")
|
||||||
|
ASCIIColors.white(" ├─ Graph Storage: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.graph_storage}")
|
||||||
|
ASCIIColors.white(" └─ Document Status Storage: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.doc_status_storage}")
|
||||||
|
|
||||||
|
ASCIIColors.magenta("\n🛠️ System Configuration:")
|
||||||
|
ASCIIColors.white(" ├─ Ollama Emulating Model: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{ollama_server_infos.LIGHTRAG_MODEL}")
|
||||||
|
ASCIIColors.white(" ├─ Log Level: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.log_level}")
|
||||||
|
ASCIIColors.white(" ├─ Verbose Debug: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.verbose}")
|
||||||
|
ASCIIColors.white(" └─ Timeout: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{args.timeout if args.timeout else 'None (infinite)'}")
|
||||||
|
|
||||||
|
# Server Status
|
||||||
|
ASCIIColors.green("\n✨ Server starting up...\n")
|
||||||
|
|
||||||
|
# Server Access Information
|
||||||
|
protocol = "https" if args.ssl else "http"
|
||||||
|
if args.host == "0.0.0.0":
|
||||||
|
ASCIIColors.magenta("\n🌐 Server Access Information:")
|
||||||
|
ASCIIColors.white(" ├─ Local Access: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}")
|
||||||
|
ASCIIColors.white(" ├─ Remote Access: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{protocol}://<your-ip-address>:{args.port}")
|
||||||
|
ASCIIColors.white(" ├─ API Documentation (local): ", end="")
|
||||||
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/docs")
|
||||||
|
ASCIIColors.white(" ├─ Alternative Documentation (local): ", end="")
|
||||||
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/redoc")
|
||||||
|
ASCIIColors.white(" └─ WebUI (local): ", end="")
|
||||||
|
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/webui")
|
||||||
|
|
||||||
|
ASCIIColors.yellow("\n📝 Note:")
|
||||||
|
ASCIIColors.white(""" Since the server is running on 0.0.0.0:
|
||||||
|
- Use 'localhost' or '127.0.0.1' for local access
|
||||||
|
- Use your machine's IP address for remote access
|
||||||
|
- To find your IP address:
|
||||||
|
• Windows: Run 'ipconfig' in terminal
|
||||||
|
• Linux/Mac: Run 'ifconfig' or 'ip addr' in terminal
|
||||||
|
""")
|
||||||
|
else:
|
||||||
|
base_url = f"{protocol}://{args.host}:{args.port}"
|
||||||
|
ASCIIColors.magenta("\n🌐 Server Access Information:")
|
||||||
|
ASCIIColors.white(" ├─ Base URL: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{base_url}")
|
||||||
|
ASCIIColors.white(" ├─ API Documentation: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{base_url}/docs")
|
||||||
|
ASCIIColors.white(" └─ Alternative Documentation: ", end="")
|
||||||
|
ASCIIColors.yellow(f"{base_url}/redoc")
|
||||||
|
|
||||||
|
# Usage Examples
|
||||||
|
ASCIIColors.magenta("\n📚 Quick Start Guide:")
|
||||||
|
ASCIIColors.cyan("""
|
||||||
|
1. Access the Swagger UI:
|
||||||
|
Open your browser and navigate to the API documentation URL above
|
||||||
|
|
||||||
|
2. API Authentication:""")
|
||||||
|
if args.key:
|
||||||
|
ASCIIColors.cyan(""" Add the following header to your requests:
|
||||||
|
X-API-Key: <your-api-key>
|
||||||
|
""")
|
||||||
|
else:
|
||||||
|
ASCIIColors.cyan(" No authentication required\n")
|
||||||
|
|
||||||
|
ASCIIColors.cyan(""" 3. Basic Operations:
|
||||||
|
- POST /upload_document: Upload new documents to RAG
|
||||||
|
- POST /query: Query your document collection
|
||||||
|
- GET /collections: List available collections
|
||||||
|
|
||||||
|
4. Monitor the server:
|
||||||
|
- Check server logs for detailed operation information
|
||||||
|
- Use healthcheck endpoint: GET /health
|
||||||
|
""")
|
||||||
|
|
||||||
|
# Security Notice
|
||||||
|
if args.key:
|
||||||
|
ASCIIColors.yellow("\n⚠️ Security Notice:")
|
||||||
|
ASCIIColors.white(""" API Key authentication is enabled.
|
||||||
|
Make sure to include the X-API-Key header in all your requests.
|
||||||
|
""")
|
||||||
|
|
||||||
|
ASCIIColors.green("Server is ready to accept connections! 🚀\n")
|
||||||
|
|
||||||
|
# Ensure splash output flush to system log
|
||||||
|
sys.stdout.flush()
|
@@ -48,11 +48,20 @@ class JsonDocStatusStorage(DocStatusStorage):
|
|||||||
self, status: DocStatus
|
self, status: DocStatus
|
||||||
) -> dict[str, DocProcessingStatus]:
|
) -> dict[str, DocProcessingStatus]:
|
||||||
"""Get all documents with a specific status"""
|
"""Get all documents with a specific status"""
|
||||||
return {
|
result = {}
|
||||||
k: DocProcessingStatus(**v)
|
for k, v in self._data.items():
|
||||||
for k, v in self._data.items()
|
if v["status"] == status.value:
|
||||||
if v["status"] == status.value
|
try:
|
||||||
}
|
# Make a copy of the data to avoid modifying the original
|
||||||
|
data = v.copy()
|
||||||
|
# If content is missing, use content_summary as content
|
||||||
|
if "content" not in data and "content_summary" in data:
|
||||||
|
data["content"] = data["content_summary"]
|
||||||
|
result[k] = DocProcessingStatus(**data)
|
||||||
|
except KeyError as e:
|
||||||
|
logger.error(f"Missing required field for document {k}: {e}")
|
||||||
|
continue
|
||||||
|
return result
|
||||||
|
|
||||||
async def index_done_callback(self) -> None:
|
async def index_done_callback(self) -> None:
|
||||||
write_json(self._data, self._file_name)
|
write_json(self._data, self._file_name)
|
||||||
|
@@ -263,9 +263,8 @@ class LightRAG:
|
|||||||
_storages_status: StoragesStatus = field(default=StoragesStatus.NOT_CREATED)
|
_storages_status: StoragesStatus = field(default=StoragesStatus.NOT_CREATED)
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
logger.setLevel(self.log_level)
|
|
||||||
os.makedirs(os.path.dirname(self.log_file_path), exist_ok=True)
|
os.makedirs(os.path.dirname(self.log_file_path), exist_ok=True)
|
||||||
set_logger(self.log_file_path)
|
set_logger(self.log_file_path, self.log_level)
|
||||||
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
||||||
|
|
||||||
if not os.path.exists(self.working_dir):
|
if not os.path.exists(self.working_dir):
|
||||||
|
@@ -57,11 +57,17 @@ logger = logging.getLogger("lightrag")
|
|||||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
|
||||||
def set_logger(log_file: str):
|
def set_logger(log_file: str, level: int = logging.DEBUG):
|
||||||
logger.setLevel(logging.DEBUG)
|
"""Set up file logging with the specified level.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
log_file: Path to the log file
|
||||||
|
level: Logging level (e.g. logging.DEBUG, logging.INFO)
|
||||||
|
"""
|
||||||
|
logger.setLevel(level)
|
||||||
|
|
||||||
file_handler = logging.FileHandler(log_file, encoding="utf-8")
|
file_handler = logging.FileHandler(log_file, encoding="utf-8")
|
||||||
file_handler.setLevel(logging.DEBUG)
|
file_handler.setLevel(level)
|
||||||
|
|
||||||
formatter = logging.Formatter(
|
formatter = logging.Formatter(
|
||||||
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||||
|
@@ -1,8 +1,6 @@
|
|||||||
aiohttp
|
aiohttp
|
||||||
configparser
|
configparser
|
||||||
|
future
|
||||||
# database packages
|
|
||||||
networkx
|
|
||||||
|
|
||||||
# Basic modules
|
# Basic modules
|
||||||
numpy
|
numpy
|
||||||
|
Reference in New Issue
Block a user