Add pipeline status control for concurrent document indexing processes

• Add shared pipeline status namespace
• Implement concurrent process control
• Add request queuing for pending jobs
This commit is contained in:
yangdx
2025-02-28 11:52:42 +08:00
parent feaa7ce69d
commit b2da69b7f1
2 changed files with 176 additions and 104 deletions

View File

@@ -80,6 +80,18 @@ def initialize_share_data(workers: int = 1):
# Mark as initialized # Mark as initialized
_initialized = True _initialized = True
# Initialize pipeline status for document indexing control
pipeline_namespace = get_namespace_data("pipeline_status")
pipeline_namespace.update({
"busy": False, # Control concurrent processes
"job_name": "Default Job", # Current job name (indexing files/indexing texts)
"job_start": None, # Job start time
"docs": 0, # Total number of documents to be indexed
"batchs": 0, # Number of batches for processing documents
"cur_batch": 0, # Current processing batch
"request_pending": False, # Flag for pending request for processing
})
def try_initialize_namespace(namespace: str) -> bool: def try_initialize_namespace(namespace: str) -> bool:

View File

@@ -273,8 +273,6 @@ class LightRAG:
from lightrag.kg.shared_storage import ( from lightrag.kg.shared_storage import (
initialize_share_data, initialize_share_data,
try_initialize_namespace,
get_namespace_data,
) )
initialize_share_data() initialize_share_data()
@@ -672,117 +670,179 @@ class LightRAG:
3. Process each chunk for entity and relation extraction 3. Process each chunk for entity and relation extraction
4. Update the document status 4. Update the document status
""" """
# 1. Get all pending, failed, and abnormally terminated processing documents. from lightrag.kg.shared_storage import get_namespace_data, get_storage_lock
# Run the asynchronous status retrievals in parallel using asyncio.gather
processing_docs, failed_docs, pending_docs = await asyncio.gather( # Get pipeline status shared data and lock
self.doc_status.get_docs_by_status(DocStatus.PROCESSING), pipeline_status = get_namespace_data("pipeline_status")
self.doc_status.get_docs_by_status(DocStatus.FAILED), storage_lock = get_storage_lock()
self.doc_status.get_docs_by_status(DocStatus.PENDING),
) # Check if another process is already processing the queue
process_documents = False
to_process_docs: dict[str, DocProcessingStatus] = {} with storage_lock:
to_process_docs.update(processing_docs) if not pipeline_status.get("busy", False):
to_process_docs.update(failed_docs) # No other process is busy, we can process documents
to_process_docs.update(pending_docs) pipeline_status.update({
"busy": True,
if not to_process_docs: "job_name": "indexing files",
logger.info("All documents have been processed or are duplicates") "job_start": datetime.now().isoformat(),
"docs": 0,
"batchs": 0,
"cur_batch": 0,
"request_pending": False # Clear any previous request
})
process_documents = True
else:
# Another process is busy, just set request flag and return
pipeline_status["request_pending"] = True
logger.info("Another process is already processing the document queue. Request queued.")
if not process_documents:
return return
try:
# Process documents until no more documents or requests
while True:
# 1. Get all pending, failed, and abnormally terminated processing documents.
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
self.doc_status.get_docs_by_status(DocStatus.PENDING),
)
# 2. split docs into chunks, insert chunks, update doc status to_process_docs: dict[str, DocProcessingStatus] = {}
docs_batches = [ to_process_docs.update(processing_docs)
list(to_process_docs.items())[i : i + self.max_parallel_insert] to_process_docs.update(failed_docs)
for i in range(0, len(to_process_docs), self.max_parallel_insert) to_process_docs.update(pending_docs)
]
logger.info(f"Number of batches to process: {len(docs_batches)}.") if not to_process_docs:
logger.info("All documents have been processed or are duplicates")
break
batches: list[Any] = [] # Update pipeline status with document count (with lock)
# 3. iterate over batches with storage_lock:
for batch_idx, docs_batch in enumerate(docs_batches): pipeline_status["docs"] = len(to_process_docs)
# 2. split docs into chunks, insert chunks, update doc status
docs_batches = [
list(to_process_docs.items())[i : i + self.max_parallel_insert]
for i in range(0, len(to_process_docs), self.max_parallel_insert)
]
async def batch( # Update pipeline status with batch information (directly, as it's atomic)
batch_idx: int, pipeline_status.update({
docs_batch: list[tuple[str, DocProcessingStatus]], "batchs": len(docs_batches),
size_batch: int, "cur_batch": 0
) -> None: })
logger.info(f"Start processing batch {batch_idx + 1} of {size_batch}.")
# 4. iterate over batch logger.info(f"Number of batches to process: {len(docs_batches)}.")
for doc_id_processing_status in docs_batch:
doc_id, status_doc = doc_id_processing_status batches: list[Any] = []
# Generate chunks from document # 3. iterate over batches
chunks: dict[str, Any] = { for batch_idx, docs_batch in enumerate(docs_batches):
compute_mdhash_id(dp["content"], prefix="chunk-"): { # Update current batch in pipeline status (directly, as it's atomic)
**dp, pipeline_status["cur_batch"] = batch_idx + 1
"full_doc_id": doc_id,
} async def batch(
for dp in self.chunking_func( batch_idx: int,
status_doc.content, docs_batch: list[tuple[str, DocProcessingStatus]],
split_by_character, size_batch: int,
split_by_character_only, ) -> None:
self.chunk_overlap_token_size, logger.info(f"Start processing batch {batch_idx + 1} of {size_batch}.")
self.chunk_token_size, # 4. iterate over batch
self.tiktoken_model_name, for doc_id_processing_status in docs_batch:
) doc_id, status_doc = doc_id_processing_status
} # Generate chunks from document
# Process document (text chunks and full docs) in parallel chunks: dict[str, Any] = {
tasks = [ compute_mdhash_id(dp["content"], prefix="chunk-"): {
self.doc_status.upsert( **dp,
{ "full_doc_id": doc_id,
doc_id: {
"status": DocStatus.PROCESSING,
"updated_at": datetime.now().isoformat(),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
} }
for dp in self.chunking_func(
status_doc.content,
split_by_character,
split_by_character_only,
self.chunk_overlap_token_size,
self.chunk_token_size,
self.tiktoken_model_name,
)
} }
), # Process document (text chunks and full docs) in parallel
self.chunks_vdb.upsert(chunks), tasks = [
self._process_entity_relation_graph(chunks), self.doc_status.upsert(
self.full_docs.upsert( {
{doc_id: {"content": status_doc.content}} doc_id: {
), "status": DocStatus.PROCESSING,
self.text_chunks.upsert(chunks), "updated_at": datetime.now().isoformat(),
] "content": status_doc.content,
try: "content_summary": status_doc.content_summary,
await asyncio.gather(*tasks) "content_length": status_doc.content_length,
await self.doc_status.upsert( "created_at": status_doc.created_at,
{ }
doc_id: { }
"status": DocStatus.PROCESSED, ),
"chunks_count": len(chunks), self.chunks_vdb.upsert(chunks),
"content": status_doc.content, self._process_entity_relation_graph(chunks),
"content_summary": status_doc.content_summary, self.full_docs.upsert(
"content_length": status_doc.content_length, {doc_id: {"content": status_doc.content}}
"created_at": status_doc.created_at, ),
"updated_at": datetime.now().isoformat(), self.text_chunks.upsert(chunks),
} ]
} try:
) await asyncio.gather(*tasks)
except Exception as e: await self.doc_status.upsert(
logger.error(f"Failed to process document {doc_id}: {str(e)}") {
await self.doc_status.upsert( doc_id: {
{ "status": DocStatus.PROCESSED,
doc_id: { "chunks_count": len(chunks),
"status": DocStatus.FAILED, "content": status_doc.content,
"error": str(e), "content_summary": status_doc.content_summary,
"content": status_doc.content, "content_length": status_doc.content_length,
"content_summary": status_doc.content_summary, "created_at": status_doc.created_at,
"content_length": status_doc.content_length, "updated_at": datetime.now().isoformat(),
"created_at": status_doc.created_at, }
"updated_at": datetime.now().isoformat(), }
} )
} except Exception as e:
) logger.error(f"Failed to process document {doc_id}: {str(e)}")
continue await self.doc_status.upsert(
logger.info(f"Completed batch {batch_idx + 1} of {len(docs_batches)}.") {
doc_id: {
"status": DocStatus.FAILED,
"error": str(e),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
}
}
)
continue
logger.info(f"Completed batch {batch_idx + 1} of {len(docs_batches)}.")
batches.append(batch(batch_idx, docs_batch, len(docs_batches))) batches.append(batch(batch_idx, docs_batch, len(docs_batches)))
await asyncio.gather(*batches) await asyncio.gather(*batches)
await self._insert_done() await self._insert_done()
# Check if there's a pending request to process more documents (with lock)
has_pending_request = False
with storage_lock:
has_pending_request = pipeline_status.get("request_pending", False)
if has_pending_request:
# Clear the request flag before checking for more documents
pipeline_status["request_pending"] = False
if not has_pending_request:
break
logger.info("Processing additional documents due to pending request")
finally:
# Always reset busy status when done or if an exception occurs (with lock)
with storage_lock:
pipeline_status["busy"] = False
logger.info("Document processing pipeline completed")
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None: async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
try: try: