Add pipeline status control for concurrent document indexing processes

• Add shared pipeline status namespace
• Implement concurrent process control
• Add request queuing for pending jobs
This commit is contained in:
yangdx
2025-02-28 11:52:42 +08:00
parent feaa7ce69d
commit b2da69b7f1
2 changed files with 176 additions and 104 deletions

View File

@@ -81,6 +81,18 @@ def initialize_share_data(workers: int = 1):
# Mark as initialized
_initialized = True
# Initialize pipeline status for document indexing control
pipeline_namespace = get_namespace_data("pipeline_status")
pipeline_namespace.update({
"busy": False, # Control concurrent processes
"job_name": "Default Job", # Current job name (indexing files/indexing texts)
"job_start": None, # Job start time
"docs": 0, # Total number of documents to be indexed
"batchs": 0, # Number of batches for processing documents
"cur_batch": 0, # Current processing batch
"request_pending": False, # Flag for pending request for processing
})
def try_initialize_namespace(namespace: str) -> bool:
"""

View File

@@ -273,8 +273,6 @@ class LightRAG:
from lightrag.kg.shared_storage import (
initialize_share_data,
try_initialize_namespace,
get_namespace_data,
)
initialize_share_data()
@@ -672,8 +670,39 @@ class LightRAG:
3. Process each chunk for entity and relation extraction
4. Update the document status
"""
from lightrag.kg.shared_storage import get_namespace_data, get_storage_lock
# Get pipeline status shared data and lock
pipeline_status = get_namespace_data("pipeline_status")
storage_lock = get_storage_lock()
# Check if another process is already processing the queue
process_documents = False
with storage_lock:
if not pipeline_status.get("busy", False):
# No other process is busy, we can process documents
pipeline_status.update({
"busy": True,
"job_name": "indexing files",
"job_start": datetime.now().isoformat(),
"docs": 0,
"batchs": 0,
"cur_batch": 0,
"request_pending": False # Clear any previous request
})
process_documents = True
else:
# Another process is busy, just set request flag and return
pipeline_status["request_pending"] = True
logger.info("Another process is already processing the document queue. Request queued.")
if not process_documents:
return
try:
# Process documents until no more documents or requests
while True:
# 1. Get all pending, failed, and abnormally terminated processing documents.
# Run the asynchronous status retrievals in parallel using asyncio.gather
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
@@ -687,7 +716,11 @@ class LightRAG:
if not to_process_docs:
logger.info("All documents have been processed or are duplicates")
return
break
# Update pipeline status with document count (with lock)
with storage_lock:
pipeline_status["docs"] = len(to_process_docs)
# 2. split docs into chunks, insert chunks, update doc status
docs_batches = [
@@ -695,11 +728,19 @@ class LightRAG:
for i in range(0, len(to_process_docs), self.max_parallel_insert)
]
# Update pipeline status with batch information (directly, as it's atomic)
pipeline_status.update({
"batchs": len(docs_batches),
"cur_batch": 0
})
logger.info(f"Number of batches to process: {len(docs_batches)}.")
batches: list[Any] = []
# 3. iterate over batches
for batch_idx, docs_batch in enumerate(docs_batches):
# Update current batch in pipeline status (directly, as it's atomic)
pipeline_status["cur_batch"] = batch_idx + 1
async def batch(
batch_idx: int,
@@ -784,6 +825,25 @@ class LightRAG:
await asyncio.gather(*batches)
await self._insert_done()
# Check if there's a pending request to process more documents (with lock)
has_pending_request = False
with storage_lock:
has_pending_request = pipeline_status.get("request_pending", False)
if has_pending_request:
# Clear the request flag before checking for more documents
pipeline_status["request_pending"] = False
if not has_pending_request:
break
logger.info("Processing additional documents due to pending request")
finally:
# Always reset busy status when done or if an exception occurs (with lock)
with storage_lock:
pipeline_status["busy"] = False
logger.info("Document processing pipeline completed")
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
try:
await extract_entities(