Add pipeline status control for concurrent document indexing processes
• Add shared pipeline status namespace • Implement concurrent process control • Add request queuing for pending jobs
This commit is contained in:
@@ -80,6 +80,18 @@ def initialize_share_data(workers: int = 1):
|
||||
|
||||
# Mark as initialized
|
||||
_initialized = True
|
||||
|
||||
# Initialize pipeline status for document indexing control
|
||||
pipeline_namespace = get_namespace_data("pipeline_status")
|
||||
pipeline_namespace.update({
|
||||
"busy": False, # Control concurrent processes
|
||||
"job_name": "Default Job", # Current job name (indexing files/indexing texts)
|
||||
"job_start": None, # Job start time
|
||||
"docs": 0, # Total number of documents to be indexed
|
||||
"batchs": 0, # Number of batches for processing documents
|
||||
"cur_batch": 0, # Current processing batch
|
||||
"request_pending": False, # Flag for pending request for processing
|
||||
})
|
||||
|
||||
|
||||
def try_initialize_namespace(namespace: str) -> bool:
|
||||
|
@@ -273,8 +273,6 @@ class LightRAG:
|
||||
|
||||
from lightrag.kg.shared_storage import (
|
||||
initialize_share_data,
|
||||
try_initialize_namespace,
|
||||
get_namespace_data,
|
||||
)
|
||||
initialize_share_data()
|
||||
|
||||
@@ -672,117 +670,179 @@ class LightRAG:
|
||||
3. Process each chunk for entity and relation extraction
|
||||
4. Update the document status
|
||||
"""
|
||||
# 1. Get all pending, failed, and abnormally terminated processing documents.
|
||||
# Run the asynchronous status retrievals in parallel using asyncio.gather
|
||||
processing_docs, failed_docs, pending_docs = await asyncio.gather(
|
||||
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
|
||||
self.doc_status.get_docs_by_status(DocStatus.FAILED),
|
||||
self.doc_status.get_docs_by_status(DocStatus.PENDING),
|
||||
)
|
||||
|
||||
to_process_docs: dict[str, DocProcessingStatus] = {}
|
||||
to_process_docs.update(processing_docs)
|
||||
to_process_docs.update(failed_docs)
|
||||
to_process_docs.update(pending_docs)
|
||||
|
||||
if not to_process_docs:
|
||||
logger.info("All documents have been processed or are duplicates")
|
||||
from lightrag.kg.shared_storage import get_namespace_data, get_storage_lock
|
||||
|
||||
# Get pipeline status shared data and lock
|
||||
pipeline_status = get_namespace_data("pipeline_status")
|
||||
storage_lock = get_storage_lock()
|
||||
|
||||
# Check if another process is already processing the queue
|
||||
process_documents = False
|
||||
with storage_lock:
|
||||
if not pipeline_status.get("busy", False):
|
||||
# No other process is busy, we can process documents
|
||||
pipeline_status.update({
|
||||
"busy": True,
|
||||
"job_name": "indexing files",
|
||||
"job_start": datetime.now().isoformat(),
|
||||
"docs": 0,
|
||||
"batchs": 0,
|
||||
"cur_batch": 0,
|
||||
"request_pending": False # Clear any previous request
|
||||
})
|
||||
process_documents = True
|
||||
else:
|
||||
# Another process is busy, just set request flag and return
|
||||
pipeline_status["request_pending"] = True
|
||||
logger.info("Another process is already processing the document queue. Request queued.")
|
||||
|
||||
if not process_documents:
|
||||
return
|
||||
|
||||
try:
|
||||
# Process documents until no more documents or requests
|
||||
while True:
|
||||
# 1. Get all pending, failed, and abnormally terminated processing documents.
|
||||
processing_docs, failed_docs, pending_docs = await asyncio.gather(
|
||||
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
|
||||
self.doc_status.get_docs_by_status(DocStatus.FAILED),
|
||||
self.doc_status.get_docs_by_status(DocStatus.PENDING),
|
||||
)
|
||||
|
||||
# 2. split docs into chunks, insert chunks, update doc status
|
||||
docs_batches = [
|
||||
list(to_process_docs.items())[i : i + self.max_parallel_insert]
|
||||
for i in range(0, len(to_process_docs), self.max_parallel_insert)
|
||||
]
|
||||
to_process_docs: dict[str, DocProcessingStatus] = {}
|
||||
to_process_docs.update(processing_docs)
|
||||
to_process_docs.update(failed_docs)
|
||||
to_process_docs.update(pending_docs)
|
||||
|
||||
logger.info(f"Number of batches to process: {len(docs_batches)}.")
|
||||
if not to_process_docs:
|
||||
logger.info("All documents have been processed or are duplicates")
|
||||
break
|
||||
|
||||
batches: list[Any] = []
|
||||
# 3. iterate over batches
|
||||
for batch_idx, docs_batch in enumerate(docs_batches):
|
||||
# Update pipeline status with document count (with lock)
|
||||
with storage_lock:
|
||||
pipeline_status["docs"] = len(to_process_docs)
|
||||
|
||||
# 2. split docs into chunks, insert chunks, update doc status
|
||||
docs_batches = [
|
||||
list(to_process_docs.items())[i : i + self.max_parallel_insert]
|
||||
for i in range(0, len(to_process_docs), self.max_parallel_insert)
|
||||
]
|
||||
|
||||
async def batch(
|
||||
batch_idx: int,
|
||||
docs_batch: list[tuple[str, DocProcessingStatus]],
|
||||
size_batch: int,
|
||||
) -> None:
|
||||
logger.info(f"Start processing batch {batch_idx + 1} of {size_batch}.")
|
||||
# 4. iterate over batch
|
||||
for doc_id_processing_status in docs_batch:
|
||||
doc_id, status_doc = doc_id_processing_status
|
||||
# Generate chunks from document
|
||||
chunks: dict[str, Any] = {
|
||||
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
||||
**dp,
|
||||
"full_doc_id": doc_id,
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
status_doc.content,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
self.chunk_overlap_token_size,
|
||||
self.chunk_token_size,
|
||||
self.tiktoken_model_name,
|
||||
)
|
||||
}
|
||||
# Process document (text chunks and full docs) in parallel
|
||||
tasks = [
|
||||
self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSING,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
# Update pipeline status with batch information (directly, as it's atomic)
|
||||
pipeline_status.update({
|
||||
"batchs": len(docs_batches),
|
||||
"cur_batch": 0
|
||||
})
|
||||
|
||||
logger.info(f"Number of batches to process: {len(docs_batches)}.")
|
||||
|
||||
batches: list[Any] = []
|
||||
# 3. iterate over batches
|
||||
for batch_idx, docs_batch in enumerate(docs_batches):
|
||||
# Update current batch in pipeline status (directly, as it's atomic)
|
||||
pipeline_status["cur_batch"] = batch_idx + 1
|
||||
|
||||
async def batch(
|
||||
batch_idx: int,
|
||||
docs_batch: list[tuple[str, DocProcessingStatus]],
|
||||
size_batch: int,
|
||||
) -> None:
|
||||
logger.info(f"Start processing batch {batch_idx + 1} of {size_batch}.")
|
||||
# 4. iterate over batch
|
||||
for doc_id_processing_status in docs_batch:
|
||||
doc_id, status_doc = doc_id_processing_status
|
||||
# Generate chunks from document
|
||||
chunks: dict[str, Any] = {
|
||||
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
||||
**dp,
|
||||
"full_doc_id": doc_id,
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
status_doc.content,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
self.chunk_overlap_token_size,
|
||||
self.chunk_token_size,
|
||||
self.tiktoken_model_name,
|
||||
)
|
||||
}
|
||||
),
|
||||
self.chunks_vdb.upsert(chunks),
|
||||
self._process_entity_relation_graph(chunks),
|
||||
self.full_docs.upsert(
|
||||
{doc_id: {"content": status_doc.content}}
|
||||
),
|
||||
self.text_chunks.upsert(chunks),
|
||||
]
|
||||
try:
|
||||
await asyncio.gather(*tasks)
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process document {doc_id}: {str(e)}")
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
)
|
||||
continue
|
||||
logger.info(f"Completed batch {batch_idx + 1} of {len(docs_batches)}.")
|
||||
# Process document (text chunks and full docs) in parallel
|
||||
tasks = [
|
||||
self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSING,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
}
|
||||
}
|
||||
),
|
||||
self.chunks_vdb.upsert(chunks),
|
||||
self._process_entity_relation_graph(chunks),
|
||||
self.full_docs.upsert(
|
||||
{doc_id: {"content": status_doc.content}}
|
||||
),
|
||||
self.text_chunks.upsert(chunks),
|
||||
]
|
||||
try:
|
||||
await asyncio.gather(*tasks)
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process document {doc_id}: {str(e)}")
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
)
|
||||
continue
|
||||
logger.info(f"Completed batch {batch_idx + 1} of {len(docs_batches)}.")
|
||||
|
||||
batches.append(batch(batch_idx, docs_batch, len(docs_batches)))
|
||||
batches.append(batch(batch_idx, docs_batch, len(docs_batches)))
|
||||
|
||||
await asyncio.gather(*batches)
|
||||
await self._insert_done()
|
||||
await asyncio.gather(*batches)
|
||||
await self._insert_done()
|
||||
|
||||
# Check if there's a pending request to process more documents (with lock)
|
||||
has_pending_request = False
|
||||
with storage_lock:
|
||||
has_pending_request = pipeline_status.get("request_pending", False)
|
||||
if has_pending_request:
|
||||
# Clear the request flag before checking for more documents
|
||||
pipeline_status["request_pending"] = False
|
||||
|
||||
if not has_pending_request:
|
||||
break
|
||||
|
||||
logger.info("Processing additional documents due to pending request")
|
||||
|
||||
finally:
|
||||
# Always reset busy status when done or if an exception occurs (with lock)
|
||||
with storage_lock:
|
||||
pipeline_status["busy"] = False
|
||||
logger.info("Document processing pipeline completed")
|
||||
|
||||
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
|
||||
try:
|
||||
|
Reference in New Issue
Block a user