diff --git a/lightrag/operate.py b/lightrag/operate.py index fa52c55a..cc5dffe7 100644 --- a/lightrag/operate.py +++ b/lightrag/operate.py @@ -688,7 +688,7 @@ async def kg_query( return sys_prompt len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt)) - logger.info(f"[kg_query]Prompt Tokens: {len_of_prompts}") + logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}") response = await use_model_func( query, @@ -776,7 +776,7 @@ async def extract_keywords_only( ) len_of_prompts = len(encode_string_by_tiktoken(kw_prompt)) - logger.info(f"[kg_query]Prompt Tokens: {len_of_prompts}") + logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}") # 5. Call the LLM for keyword extraction use_model_func = global_config["llm_model_func"] @@ -941,7 +941,7 @@ async def mix_kg_vector_query( chunk_text = f"[Created at: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(c['created_at']))}]\n{chunk_text}" formatted_chunks.append(chunk_text) - logger.info( + logger.debug( f"Truncate chunks from {len(chunks)} to {len(formatted_chunks)} (max tokens:{query_param.max_token_for_text_unit})" ) return "\n--New Chunk--\n".join(formatted_chunks) @@ -977,7 +977,7 @@ async def mix_kg_vector_query( return sys_prompt len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt)) - logger.info(f"[mix_kg_vector_query]Prompt Tokens: {len_of_prompts}") + logger.debug(f"[mix_kg_vector_query]Prompt Tokens: {len_of_prompts}") # 6. Generate response response = await use_model_func( @@ -1102,7 +1102,7 @@ async def _build_query_context( entities_tokens = len(encode_string_by_tiktoken(entities_context)) relations_tokens = len(encode_string_by_tiktoken(relations_context)) text_units_tokens = len(encode_string_by_tiktoken(text_units_context)) - logger.info( + logger.debug( f"Context Tokens - Total: {contex_tokens}, Entities: {entities_tokens}, Relations: {relations_tokens}, Chunks: {text_units_tokens}" ) @@ -1157,7 +1157,7 @@ async def _get_node_data( key=lambda x: x["description"], max_token_size=query_param.max_token_for_local_context, ) - logger.info( + logger.debug( f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})" ) @@ -1295,7 +1295,7 @@ async def _find_most_related_text_unit_from_entities( max_token_size=query_param.max_token_for_text_unit, ) - logger.info( + logger.debug( f"Truncate chunks from {len(all_text_units_lookup)} to {len(all_text_units)} (max tokens:{query_param.max_token_for_text_unit})" ) @@ -1341,7 +1341,7 @@ async def _find_most_related_edges_from_entities( max_token_size=query_param.max_token_for_global_context, ) - logger.info( + logger.debug( f"Truncate relations from {len(all_edges)} to {len(all_edges_data)} (max tokens:{query_param.max_token_for_global_context})" ) @@ -1398,7 +1398,7 @@ async def _get_edge_data( key=lambda x: x["description"], max_token_size=query_param.max_token_for_global_context, ) - logger.info( + logger.debug( f"Truncate relations from {len_edge_datas} to {len(edge_datas)} (max tokens:{query_param.max_token_for_global_context})" ) @@ -1506,7 +1506,7 @@ async def _find_most_related_entities_from_relationships( key=lambda x: x["description"], max_token_size=query_param.max_token_for_local_context, ) - logger.info( + logger.debug( f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})" ) @@ -1564,7 +1564,7 @@ async def _find_related_text_unit_from_relationships( max_token_size=query_param.max_token_for_text_unit, ) - logger.info( + logger.debug( f"Truncate chunks from {len(valid_text_units)} to {len(truncated_text_units)} (max tokens:{query_param.max_token_for_text_unit})" ) @@ -1635,7 +1635,7 @@ async def naive_query( logger.warning("No chunks left after truncation") return PROMPTS["fail_response"] - logger.info( + logger.debug( f"Truncate chunks from {len(chunks)} to {len(maybe_trun_chunks)} (max tokens:{query_param.max_token_for_text_unit})" ) @@ -1807,7 +1807,7 @@ async def kg_query_with_keywords( return sys_prompt len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt)) - logger.info(f"[kg_query_with_keywords]Prompt Tokens: {len_of_prompts}") + logger.debug(f"[kg_query_with_keywords]Prompt Tokens: {len_of_prompts}") response = await use_model_func( query,