Refactor LLM cache handling and entity extraction
- Removed custom LLM function in entity extraction - Simplified cache handling logic - Added `force_llm_cache` parameter - Updated cache handling conditions
This commit is contained in:
@@ -484,10 +484,10 @@ def dequantize_embedding(
|
||||
|
||||
|
||||
async def handle_cache(
|
||||
hashing_kv, args_hash, prompt, mode="default", cache_type=None, llm=None
|
||||
hashing_kv, args_hash, prompt, mode="default", cache_type=None, force_llm_cache=False
|
||||
):
|
||||
"""Generic cache handling function"""
|
||||
if hashing_kv is None or not hashing_kv.global_config.get("enable_llm_cache"):
|
||||
if hashing_kv is None or not (force_llm_cache or hashing_kv.global_config.get("enable_llm_cache")):
|
||||
return None, None, None, None
|
||||
|
||||
if mode != "default":
|
||||
@@ -513,9 +513,7 @@ async def handle_cache(
|
||||
similarity_threshold=embedding_cache_config["similarity_threshold"],
|
||||
mode=mode,
|
||||
use_llm_check=use_llm_check,
|
||||
llm_func=llm
|
||||
if (use_llm_check and llm is not None)
|
||||
else (llm_model_func if use_llm_check else None),
|
||||
llm_func=llm_model_func if use_llm_check else None,
|
||||
original_prompt=prompt if use_llm_check else None,
|
||||
cache_type=cache_type,
|
||||
)
|
||||
|
Reference in New Issue
Block a user