Merge pull request #49 from JGalego/feat/bedrock-support
feat: Amazon Bedrock support ⛰️
This commit is contained in:
4
.gitignore
vendored
Normal file
4
.gitignore
vendored
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
__pycache__
|
||||||
|
*.egg-info
|
||||||
|
dickens/
|
||||||
|
book.txt
|
41
examples/lightrag_bedrock_demo.py
Normal file
41
examples/lightrag_bedrock_demo.py
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
"""
|
||||||
|
LightRAG meets Amazon Bedrock ⛰️
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import logging
|
||||||
|
|
||||||
|
from lightrag import LightRAG, QueryParam
|
||||||
|
from lightrag.llm import bedrock_complete, bedrock_embedding
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
|
||||||
|
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
WORKING_DIR = "./dickens"
|
||||||
|
if not os.path.exists(WORKING_DIR):
|
||||||
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=bedrock_complete,
|
||||||
|
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=1024,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=bedrock_embedding
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
with open("./book.txt", 'r', encoding='utf-8') as f:
|
||||||
|
rag.insert(f.read())
|
||||||
|
|
||||||
|
for mode in ["naive", "local", "global", "hybrid"]:
|
||||||
|
print("\n+-" + "-" * len(mode) + "-+")
|
||||||
|
print(f"| {mode.capitalize()} |")
|
||||||
|
print("+-" + "-" * len(mode) + "-+\n")
|
||||||
|
print(
|
||||||
|
rag.query(
|
||||||
|
"What are the top themes in this story?",
|
||||||
|
param=QueryParam(mode=mode)
|
||||||
|
)
|
||||||
|
)
|
158
lightrag/llm.py
158
lightrag/llm.py
@@ -1,4 +1,9 @@
|
|||||||
import os
|
import os
|
||||||
|
import copy
|
||||||
|
import json
|
||||||
|
import botocore
|
||||||
|
import aioboto3
|
||||||
|
import botocore.errorfactory
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import ollama
|
import ollama
|
||||||
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
||||||
@@ -48,6 +53,81 @@ async def openai_complete_if_cache(
|
|||||||
)
|
)
|
||||||
return response.choices[0].message.content
|
return response.choices[0].message.content
|
||||||
|
|
||||||
|
|
||||||
|
class BedrockError(Exception):
|
||||||
|
"""Generic error for issues related to Amazon Bedrock"""
|
||||||
|
|
||||||
|
|
||||||
|
@retry(
|
||||||
|
stop=stop_after_attempt(5),
|
||||||
|
wait=wait_exponential(multiplier=1, max=60),
|
||||||
|
retry=retry_if_exception_type((BedrockError)),
|
||||||
|
)
|
||||||
|
async def bedrock_complete_if_cache(
|
||||||
|
model, prompt, system_prompt=None, history_messages=[],
|
||||||
|
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
|
||||||
|
) -> str:
|
||||||
|
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
||||||
|
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
||||||
|
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
||||||
|
|
||||||
|
# Fix message history format
|
||||||
|
messages = []
|
||||||
|
for history_message in history_messages:
|
||||||
|
message = copy.copy(history_message)
|
||||||
|
message['content'] = [{'text': message['content']}]
|
||||||
|
messages.append(message)
|
||||||
|
|
||||||
|
# Add user prompt
|
||||||
|
messages.append({'role': "user", 'content': [{'text': prompt}]})
|
||||||
|
|
||||||
|
# Initialize Converse API arguments
|
||||||
|
args = {
|
||||||
|
'modelId': model,
|
||||||
|
'messages': messages
|
||||||
|
}
|
||||||
|
|
||||||
|
# Define system prompt
|
||||||
|
if system_prompt:
|
||||||
|
args['system'] = [{'text': system_prompt}]
|
||||||
|
|
||||||
|
# Map and set up inference parameters
|
||||||
|
inference_params_map = {
|
||||||
|
'max_tokens': "maxTokens",
|
||||||
|
'top_p': "topP",
|
||||||
|
'stop_sequences': "stopSequences"
|
||||||
|
}
|
||||||
|
if (inference_params := list(set(kwargs) & set(['max_tokens', 'temperature', 'top_p', 'stop_sequences']))):
|
||||||
|
args['inferenceConfig'] = {}
|
||||||
|
for param in inference_params:
|
||||||
|
args['inferenceConfig'][inference_params_map.get(param, param)] = kwargs.pop(param)
|
||||||
|
|
||||||
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||||
|
if hashing_kv is not None:
|
||||||
|
args_hash = compute_args_hash(model, messages)
|
||||||
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
||||||
|
if if_cache_return is not None:
|
||||||
|
return if_cache_return["return"]
|
||||||
|
|
||||||
|
# Call model via Converse API
|
||||||
|
session = aioboto3.Session()
|
||||||
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = await bedrock_async_client.converse(**args, **kwargs)
|
||||||
|
except Exception as e:
|
||||||
|
raise BedrockError(e)
|
||||||
|
|
||||||
|
if hashing_kv is not None:
|
||||||
|
await hashing_kv.upsert({
|
||||||
|
args_hash: {
|
||||||
|
'return': response['output']['message']['content'][0]['text'],
|
||||||
|
'model': model
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
return response['output']['message']['content'][0]['text']
|
||||||
|
|
||||||
async def hf_model_if_cache(
|
async def hf_model_if_cache(
|
||||||
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
@@ -145,6 +225,19 @@ async def gpt_4o_mini_complete(
|
|||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def bedrock_complete(
|
||||||
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
|
) -> str:
|
||||||
|
return await bedrock_complete_if_cache(
|
||||||
|
"anthropic.claude-3-haiku-20240307-v1:0",
|
||||||
|
prompt,
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
history_messages=history_messages,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
async def hf_model_complete(
|
async def hf_model_complete(
|
||||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
@@ -186,6 +279,71 @@ async def openai_embedding(texts: list[str], model: str = "text-embedding-3-smal
|
|||||||
return np.array([dp.embedding for dp in response.data])
|
return np.array([dp.embedding for dp in response.data])
|
||||||
|
|
||||||
|
|
||||||
|
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
||||||
|
# @retry(
|
||||||
|
# stop=stop_after_attempt(3),
|
||||||
|
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||||
|
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
||||||
|
# )
|
||||||
|
async def bedrock_embedding(
|
||||||
|
texts: list[str], model: str = "amazon.titan-embed-text-v2:0",
|
||||||
|
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None) -> np.ndarray:
|
||||||
|
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
||||||
|
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
||||||
|
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
||||||
|
|
||||||
|
session = aioboto3.Session()
|
||||||
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
||||||
|
|
||||||
|
if (model_provider := model.split(".")[0]) == "amazon":
|
||||||
|
embed_texts = []
|
||||||
|
for text in texts:
|
||||||
|
if "v2" in model:
|
||||||
|
body = json.dumps({
|
||||||
|
'inputText': text,
|
||||||
|
# 'dimensions': embedding_dim,
|
||||||
|
'embeddingTypes': ["float"]
|
||||||
|
})
|
||||||
|
elif "v1" in model:
|
||||||
|
body = json.dumps({
|
||||||
|
'inputText': text
|
||||||
|
})
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Model {model} is not supported!")
|
||||||
|
|
||||||
|
response = await bedrock_async_client.invoke_model(
|
||||||
|
modelId=model,
|
||||||
|
body=body,
|
||||||
|
accept="application/json",
|
||||||
|
contentType="application/json"
|
||||||
|
)
|
||||||
|
|
||||||
|
response_body = await response.get('body').json()
|
||||||
|
|
||||||
|
embed_texts.append(response_body['embedding'])
|
||||||
|
elif model_provider == "cohere":
|
||||||
|
body = json.dumps({
|
||||||
|
'texts': texts,
|
||||||
|
'input_type': "search_document",
|
||||||
|
'truncate': "NONE"
|
||||||
|
})
|
||||||
|
|
||||||
|
response = await bedrock_async_client.invoke_model(
|
||||||
|
model=model,
|
||||||
|
body=body,
|
||||||
|
accept="application/json",
|
||||||
|
contentType="application/json"
|
||||||
|
)
|
||||||
|
|
||||||
|
response_body = json.loads(response.get('body').read())
|
||||||
|
|
||||||
|
embed_texts = response_body['embeddings']
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
||||||
|
|
||||||
|
return np.array(embed_texts)
|
||||||
|
|
||||||
|
|
||||||
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
||||||
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
|
@@ -1,3 +1,4 @@
|
|||||||
|
aioboto3
|
||||||
openai
|
openai
|
||||||
tiktoken
|
tiktoken
|
||||||
networkx
|
networkx
|
||||||
|
Reference in New Issue
Block a user