Merge pull request #650 from danielaskdd/Add-history-support-for-ollama-api
Add history support for ollama api
This commit is contained in:
@@ -43,6 +43,9 @@ MAX_ASYNC=4
|
||||
MAX_TOKENS=32768
|
||||
EMBEDDING_DIM=1024
|
||||
MAX_EMBED_TOKENS=8192
|
||||
#HISTORY_TURNS=3
|
||||
#CHUNK_SIZE=1200
|
||||
#CHUNK_OVERLAP_SIZE=100
|
||||
|
||||
# Security (empty for no key)
|
||||
LIGHTRAG_API_KEY=your-secure-api-key-here
|
||||
|
@@ -1,140 +0,0 @@
|
||||
from datetime import datetime, timezone
|
||||
from fastapi import FastAPI
|
||||
from fastapi.responses import StreamingResponse
|
||||
import inspect
|
||||
import json
|
||||
from pydantic import BaseModel
|
||||
from typing import Optional
|
||||
|
||||
import os
|
||||
import logging
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
import nest_asyncio
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="qwen2.5:latest",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts=texts, embed_model="bge-m3:latest", host="http://127.0.0.1:11434"
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
app = FastAPI(title="LightRAG", description="LightRAG API open-webui")
|
||||
|
||||
|
||||
# Data models
|
||||
MODEL_NAME = "LightRAG:latest"
|
||||
|
||||
|
||||
class Message(BaseModel):
|
||||
role: Optional[str] = None
|
||||
content: str
|
||||
|
||||
|
||||
class OpenWebUIRequest(BaseModel):
|
||||
stream: Optional[bool] = None
|
||||
model: Optional[str] = None
|
||||
messages: list[Message]
|
||||
|
||||
|
||||
# API routes
|
||||
|
||||
|
||||
@app.get("/")
|
||||
async def index():
|
||||
return "Set Ollama link to http://ip:port/ollama in Open-WebUI Settings"
|
||||
|
||||
|
||||
@app.get("/ollama/api/version")
|
||||
async def ollama_version():
|
||||
return {"version": "0.4.7"}
|
||||
|
||||
|
||||
@app.get("/ollama/api/tags")
|
||||
async def ollama_tags():
|
||||
return {
|
||||
"models": [
|
||||
{
|
||||
"name": MODEL_NAME,
|
||||
"model": MODEL_NAME,
|
||||
"modified_at": "2024-11-12T20:22:37.561463923+08:00",
|
||||
"size": 4683087332,
|
||||
"digest": "845dbda0ea48ed749caafd9e6037047aa19acfcfd82e704d7ca97d631a0b697e",
|
||||
"details": {
|
||||
"parent_model": "",
|
||||
"format": "gguf",
|
||||
"family": "qwen2",
|
||||
"families": ["qwen2"],
|
||||
"parameter_size": "7.6B",
|
||||
"quantization_level": "Q4_K_M",
|
||||
},
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
@app.post("/ollama/api/chat")
|
||||
async def ollama_chat(request: OpenWebUIRequest):
|
||||
resp = rag.query(
|
||||
request.messages[-1].content, param=QueryParam(mode="hybrid", stream=True)
|
||||
)
|
||||
if inspect.isasyncgen(resp):
|
||||
|
||||
async def ollama_resp(chunks):
|
||||
async for chunk in chunks:
|
||||
yield (
|
||||
json.dumps(
|
||||
{
|
||||
"model": MODEL_NAME,
|
||||
"created_at": datetime.now(timezone.utc).strftime(
|
||||
"%Y-%m-%dT%H:%M:%S.%fZ"
|
||||
),
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": chunk,
|
||||
},
|
||||
"done": False,
|
||||
},
|
||||
ensure_ascii=False,
|
||||
).encode("utf-8")
|
||||
+ b"\n"
|
||||
) # the b"\n" is important
|
||||
|
||||
return StreamingResponse(ollama_resp(resp), media_type="application/json")
|
||||
else:
|
||||
return resp
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health_check():
|
||||
return {"status": "healthy"}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=8020)
|
@@ -94,8 +94,6 @@ For example, chat message "/mix 唐僧有几个徒弟" will trigger a mix mode q
|
||||
|
||||
After starting the lightrag-server, you can add an Ollama-type connection in the Open WebUI admin pannel. And then a model named lightrag:latest will appear in Open WebUI's model management interface. Users can then send queries to LightRAG through the chat interface.
|
||||
|
||||
To prevent Open WebUI from using LightRAG when generating conversation titles, go to Admin Panel > Interface > Set Task Model and change both Local Models and External Models to any option except "Current Model".
|
||||
|
||||
## Configuration
|
||||
|
||||
LightRAG can be configured using either command-line arguments or environment variables. When both are provided, command-line arguments take precedence over environment variables.
|
||||
|
@@ -17,6 +17,7 @@ import shutil
|
||||
import aiofiles
|
||||
from ascii_colors import trace_exception, ASCIIColors
|
||||
import os
|
||||
import sys
|
||||
import configparser
|
||||
|
||||
from fastapi import Depends, Security
|
||||
@@ -200,8 +201,14 @@ def display_splash_screen(args: argparse.Namespace) -> None:
|
||||
ASCIIColors.yellow(f"{args.max_async}")
|
||||
ASCIIColors.white(" ├─ Max Tokens: ", end="")
|
||||
ASCIIColors.yellow(f"{args.max_tokens}")
|
||||
ASCIIColors.white(" └─ Max Embed Tokens: ", end="")
|
||||
ASCIIColors.white(" ├─ Max Embed Tokens: ", end="")
|
||||
ASCIIColors.yellow(f"{args.max_embed_tokens}")
|
||||
ASCIIColors.white(" ├─ Chunk Size: ", end="")
|
||||
ASCIIColors.yellow(f"{args.chunk_size}")
|
||||
ASCIIColors.white(" ├─ Chunk Overlap Size: ", end="")
|
||||
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
|
||||
ASCIIColors.white(" └─ History Turns: ", end="")
|
||||
ASCIIColors.yellow(f"{args.history_turns}")
|
||||
|
||||
# System Configuration
|
||||
ASCIIColors.magenta("\n🛠️ System Configuration:")
|
||||
@@ -281,6 +288,9 @@ def display_splash_screen(args: argparse.Namespace) -> None:
|
||||
|
||||
ASCIIColors.green("Server is ready to accept connections! 🚀\n")
|
||||
|
||||
# Ensure splash output flush to system log
|
||||
sys.stdout.flush()
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
"""
|
||||
@@ -294,7 +304,7 @@ def parse_args() -> argparse.Namespace:
|
||||
description="LightRAG FastAPI Server with separate working and input directories"
|
||||
)
|
||||
|
||||
# Bindings (with env var support)
|
||||
# Bindings configuration
|
||||
parser.add_argument(
|
||||
"--llm-binding",
|
||||
default=get_env_value("LLM_BINDING", "ollama"),
|
||||
@@ -306,9 +316,6 @@ def parse_args() -> argparse.Namespace:
|
||||
help="Embedding binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
|
||||
)
|
||||
|
||||
# Parse temporary args for host defaults
|
||||
temp_args, _ = parser.parse_known_args()
|
||||
|
||||
# Server configuration
|
||||
parser.add_argument(
|
||||
"--host",
|
||||
@@ -335,13 +342,13 @@ def parse_args() -> argparse.Namespace:
|
||||
)
|
||||
|
||||
# LLM Model configuration
|
||||
default_llm_host = get_env_value(
|
||||
"LLM_BINDING_HOST", get_default_host(temp_args.llm_binding)
|
||||
)
|
||||
parser.add_argument(
|
||||
"--llm-binding-host",
|
||||
default=default_llm_host,
|
||||
help=f"llm server host URL (default: from env or {default_llm_host})",
|
||||
default=get_env_value("LLM_BINDING_HOST", None),
|
||||
help="LLM server host URL. If not provided, defaults based on llm-binding:\n"
|
||||
+ "- ollama: http://localhost:11434\n"
|
||||
+ "- lollms: http://localhost:9600\n"
|
||||
+ "- openai: https://api.openai.com/v1",
|
||||
)
|
||||
|
||||
default_llm_api_key = get_env_value("LLM_BINDING_API_KEY", None)
|
||||
@@ -359,13 +366,13 @@ def parse_args() -> argparse.Namespace:
|
||||
)
|
||||
|
||||
# Embedding model configuration
|
||||
default_embedding_host = get_env_value(
|
||||
"EMBEDDING_BINDING_HOST", get_default_host(temp_args.embedding_binding)
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-binding-host",
|
||||
default=default_embedding_host,
|
||||
help=f"embedding server host URL (default: from env or {default_embedding_host})",
|
||||
default=get_env_value("EMBEDDING_BINDING_HOST", None),
|
||||
help="Embedding server host URL. If not provided, defaults based on embedding-binding:\n"
|
||||
+ "- ollama: http://localhost:11434\n"
|
||||
+ "- lollms: http://localhost:9600\n"
|
||||
+ "- openai: https://api.openai.com/v1",
|
||||
)
|
||||
|
||||
default_embedding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
|
||||
@@ -383,14 +390,14 @@ def parse_args() -> argparse.Namespace:
|
||||
|
||||
parser.add_argument(
|
||||
"--chunk_size",
|
||||
default=1200,
|
||||
help="chunk token size default 1200",
|
||||
default=get_env_value("CHUNK_SIZE", 1200),
|
||||
help="chunk chunk size default 1200",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--chunk_overlap_size",
|
||||
default=100,
|
||||
help="chunk token size default 1200",
|
||||
default=get_env_value("CHUNK_OVERLAP_SIZE", 100),
|
||||
help="chunk overlap size default 100",
|
||||
)
|
||||
|
||||
def timeout_type(value):
|
||||
@@ -470,6 +477,13 @@ def parse_args() -> argparse.Namespace:
|
||||
help="Enable automatic scanning when the program starts",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--history-turns",
|
||||
type=int,
|
||||
default=get_env_value("HISTORY_TURNS", 3, int),
|
||||
help="Number of conversation history turns to include (default: from env or 3)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return args
|
||||
@@ -634,8 +648,7 @@ def get_api_key_dependency(api_key: Optional[str]):
|
||||
|
||||
|
||||
def create_app(args):
|
||||
# Verify that bindings arer correctly setup
|
||||
|
||||
# Verify that bindings are correctly setup
|
||||
if args.llm_binding not in [
|
||||
"lollms",
|
||||
"ollama",
|
||||
@@ -648,6 +661,13 @@ def create_app(args):
|
||||
if args.embedding_binding not in ["lollms", "ollama", "openai", "azure_openai"]:
|
||||
raise Exception("embedding binding not supported")
|
||||
|
||||
# Set default hosts if not provided
|
||||
if args.llm_binding_host is None:
|
||||
args.llm_binding_host = get_default_host(args.llm_binding)
|
||||
|
||||
if args.embedding_binding_host is None:
|
||||
args.embedding_binding_host = get_default_host(args.embedding_binding)
|
||||
|
||||
# Add SSL validation
|
||||
if args.ssl:
|
||||
if not args.ssl_certfile or not args.ssl_keyfile:
|
||||
@@ -1442,7 +1462,10 @@ def create_app(args):
|
||||
|
||||
@app.post("/api/generate")
|
||||
async def generate(raw_request: Request, request: OllamaGenerateRequest):
|
||||
"""Handle generate completion requests"""
|
||||
"""Handle generate completion requests
|
||||
For compatiblity purpuse, the request is not processed by LightRAG,
|
||||
and will be handled by underlying LLM model.
|
||||
"""
|
||||
try:
|
||||
query = request.prompt
|
||||
start_time = time.time_ns()
|
||||
@@ -1581,15 +1604,22 @@ def create_app(args):
|
||||
|
||||
@app.post("/api/chat")
|
||||
async def chat(raw_request: Request, request: OllamaChatRequest):
|
||||
"""Handle chat completion requests"""
|
||||
"""Process chat completion requests.
|
||||
Routes user queries through LightRAG by selecting query mode based on prefix indicators.
|
||||
Detects and forwards OpenWebUI session-related requests (for meta data generation task) directly to LLM.
|
||||
"""
|
||||
try:
|
||||
# Get all messages
|
||||
messages = request.messages
|
||||
if not messages:
|
||||
raise HTTPException(status_code=400, detail="No messages provided")
|
||||
|
||||
# Get the last message as query
|
||||
# Get the last message as query and previous messages as history
|
||||
query = messages[-1].content
|
||||
# Convert OllamaMessage objects to dictionaries
|
||||
conversation_history = [
|
||||
{"role": msg.role, "content": msg.content} for msg in messages[:-1]
|
||||
]
|
||||
|
||||
# Check for query prefix
|
||||
cleaned_query, mode = parse_query_mode(query)
|
||||
@@ -1597,9 +1627,17 @@ def create_app(args):
|
||||
start_time = time.time_ns()
|
||||
prompt_tokens = estimate_tokens(cleaned_query)
|
||||
|
||||
query_param = QueryParam(
|
||||
mode=mode, stream=request.stream, only_need_context=False
|
||||
)
|
||||
param_dict = {
|
||||
"mode": mode,
|
||||
"stream": request.stream,
|
||||
"only_need_context": False,
|
||||
"conversation_history": conversation_history,
|
||||
}
|
||||
|
||||
if args.history_turns is not None:
|
||||
param_dict["history_turns"] = args.history_turns
|
||||
|
||||
query_param = QueryParam(**param_dict)
|
||||
|
||||
if request.stream:
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
@@ -633,11 +633,8 @@ async def kg_query(
|
||||
# Process conversation history
|
||||
history_context = ""
|
||||
if query_param.conversation_history:
|
||||
recent_history = query_param.conversation_history[
|
||||
-query_param.history_window_size :
|
||||
]
|
||||
history_context = "\n".join(
|
||||
[f"{turn['role']}: {turn['content']}" for turn in recent_history]
|
||||
history_context = get_conversation_turns(
|
||||
query_param.conversation_history, query_param.history_turns
|
||||
)
|
||||
|
||||
sys_prompt_temp = PROMPTS["rag_response"]
|
||||
|
@@ -104,7 +104,7 @@ DEFAULT_CONFIG = {
|
||||
"host": "localhost",
|
||||
"port": 9621,
|
||||
"model": "lightrag:latest",
|
||||
"timeout": 30,
|
||||
"timeout": 120,
|
||||
"max_retries": 3,
|
||||
"retry_delay": 1,
|
||||
},
|
||||
@@ -189,19 +189,32 @@ def get_base_url(endpoint: str = "chat") -> str:
|
||||
|
||||
|
||||
def create_chat_request_data(
|
||||
content: str, stream: bool = False, model: str = None
|
||||
content: str,
|
||||
stream: bool = False,
|
||||
model: str = None,
|
||||
conversation_history: List[Dict[str, str]] = None,
|
||||
history_turns: int = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""Create chat request data
|
||||
Args:
|
||||
content: User message content
|
||||
stream: Whether to use streaming response
|
||||
model: Model name
|
||||
conversation_history: List of previous conversation messages
|
||||
history_turns: Number of history turns to include
|
||||
Returns:
|
||||
Dictionary containing complete chat request data
|
||||
"""
|
||||
messages = conversation_history or []
|
||||
if history_turns is not None and conversation_history:
|
||||
messages = messages[
|
||||
-2 * history_turns :
|
||||
] # Each turn has 2 messages (user + assistant)
|
||||
messages.append({"role": "user", "content": content})
|
||||
|
||||
return {
|
||||
"model": model or CONFIG["server"]["model"],
|
||||
"messages": [{"role": "user", "content": content}],
|
||||
"messages": messages,
|
||||
"stream": stream,
|
||||
}
|
||||
|
||||
@@ -259,11 +272,25 @@ def run_test(func: Callable, name: str) -> None:
|
||||
def test_non_stream_chat() -> None:
|
||||
"""Test non-streaming call to /api/chat endpoint"""
|
||||
url = get_base_url()
|
||||
data = create_chat_request_data(
|
||||
CONFIG["test_cases"]["basic"]["query"], stream=False
|
||||
)
|
||||
|
||||
# Send request
|
||||
# Example conversation history
|
||||
conversation_history = [
|
||||
{"role": "user", "content": "你好"},
|
||||
{"role": "assistant", "content": "你好!我是一个AI助手,很高兴为你服务。"},
|
||||
{"role": "user", "content": "西游记里有几个主要人物?"},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "西游记的主要人物有唐僧、孙悟空、猪八戒、沙和尚这四位主角。",
|
||||
},
|
||||
]
|
||||
|
||||
# Send request with conversation history and history turns
|
||||
data = create_chat_request_data(
|
||||
CONFIG["test_cases"]["basic"]["query"],
|
||||
stream=False,
|
||||
conversation_history=conversation_history,
|
||||
history_turns=2, # Only include last 2 turns
|
||||
)
|
||||
response = make_request(url, data)
|
||||
|
||||
# Print response
|
||||
@@ -297,9 +324,25 @@ def test_stream_chat() -> None:
|
||||
The last message will contain performance statistics, with done set to true.
|
||||
"""
|
||||
url = get_base_url()
|
||||
data = create_chat_request_data(CONFIG["test_cases"]["basic"]["query"], stream=True)
|
||||
|
||||
# Send request and get streaming response
|
||||
# Example conversation history
|
||||
conversation_history = [
|
||||
{"role": "user", "content": "你好"},
|
||||
{"role": "assistant", "content": "你好!我是一个AI助手,很高兴为你服务。"},
|
||||
{"role": "user", "content": "西游记里有几个主要人物?"},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "西游记的主要人物有唐僧、孙悟空、猪八戒、沙和尚这四位主角。",
|
||||
},
|
||||
]
|
||||
|
||||
# Send request with conversation history and history turns
|
||||
data = create_chat_request_data(
|
||||
CONFIG["test_cases"]["basic"]["query"],
|
||||
stream=True,
|
||||
conversation_history=conversation_history,
|
||||
history_turns=2, # Only include last 2 turns
|
||||
)
|
||||
response = make_request(url, data, stream=True)
|
||||
|
||||
if OutputControl.is_verbose():
|
||||
|
Reference in New Issue
Block a user