Merge branch 'optimize-config-management' into clear-doc
This commit is contained in:
@@ -167,6 +167,8 @@ REDIS_URI=redis://localhost:6379
|
||||
# AUTH_ACCOUNTS='admin:admin123,user1:pass456'
|
||||
# TOKEN_SECRET=Your-Key-For-LightRAG-API-Server
|
||||
# TOKEN_EXPIRE_HOURS=4
|
||||
# GUEST_TOKEN_EXPIRE_HOURS=2
|
||||
# JWT_ALGORITHM=HS256
|
||||
|
||||
### API-Key to access LightRAG Server API
|
||||
# LIGHTRAG_API_KEY=your-secure-api-key-here
|
||||
|
@@ -1,9 +1,11 @@
|
||||
import os
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
import jwt
|
||||
from dotenv import load_dotenv
|
||||
from fastapi import HTTPException, status
|
||||
from pydantic import BaseModel
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from .config import global_args
|
||||
|
||||
# use the .env that is inside the current folder
|
||||
# allows to use different .env file for each lightrag instance
|
||||
@@ -20,13 +22,12 @@ class TokenPayload(BaseModel):
|
||||
|
||||
class AuthHandler:
|
||||
def __init__(self):
|
||||
self.secret = os.getenv("TOKEN_SECRET", "4f85ds4f56dsf46")
|
||||
self.algorithm = "HS256"
|
||||
self.expire_hours = int(os.getenv("TOKEN_EXPIRE_HOURS", 4))
|
||||
self.guest_expire_hours = int(os.getenv("GUEST_TOKEN_EXPIRE_HOURS", 2))
|
||||
|
||||
self.secret = global_args.token_secret
|
||||
self.algorithm = global_args.jwt_algorithm
|
||||
self.expire_hours = global_args.token_expire_hours
|
||||
self.guest_expire_hours = global_args.guest_token_expire_hours
|
||||
self.accounts = {}
|
||||
auth_accounts = os.getenv("AUTH_ACCOUNTS")
|
||||
auth_accounts = global_args.auth_accounts
|
||||
if auth_accounts:
|
||||
for account in auth_accounts.split(","):
|
||||
username, password = account.split(":", 1)
|
||||
|
324
lightrag/api/config.py
Normal file
324
lightrag/api/config.py
Normal file
@@ -0,0 +1,324 @@
|
||||
"""
|
||||
Configs for the LightRAG API.
|
||||
"""
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
|
||||
class OllamaServerInfos:
|
||||
# Constants for emulated Ollama model information
|
||||
LIGHTRAG_NAME = "lightrag"
|
||||
LIGHTRAG_TAG = os.getenv("OLLAMA_EMULATING_MODEL_TAG", "latest")
|
||||
LIGHTRAG_MODEL = f"{LIGHTRAG_NAME}:{LIGHTRAG_TAG}"
|
||||
LIGHTRAG_SIZE = 7365960935 # it's a dummy value
|
||||
LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z"
|
||||
LIGHTRAG_DIGEST = "sha256:lightrag"
|
||||
|
||||
|
||||
ollama_server_infos = OllamaServerInfos()
|
||||
|
||||
|
||||
class DefaultRAGStorageConfig:
|
||||
KV_STORAGE = "JsonKVStorage"
|
||||
VECTOR_STORAGE = "NanoVectorDBStorage"
|
||||
GRAPH_STORAGE = "NetworkXStorage"
|
||||
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
|
||||
|
||||
|
||||
def get_default_host(binding_type: str) -> str:
|
||||
default_hosts = {
|
||||
"ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
|
||||
"lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
|
||||
"azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
|
||||
"openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
|
||||
}
|
||||
return default_hosts.get(
|
||||
binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
|
||||
) # fallback to ollama if unknown
|
||||
|
||||
|
||||
def get_env_value(env_key: str, default: any, value_type: type = str) -> any:
|
||||
"""
|
||||
Get value from environment variable with type conversion
|
||||
|
||||
Args:
|
||||
env_key (str): Environment variable key
|
||||
default (any): Default value if env variable is not set
|
||||
value_type (type): Type to convert the value to
|
||||
|
||||
Returns:
|
||||
any: Converted value from environment or default
|
||||
"""
|
||||
value = os.getenv(env_key)
|
||||
if value is None:
|
||||
return default
|
||||
|
||||
if value_type is bool:
|
||||
return value.lower() in ("true", "1", "yes", "t", "on")
|
||||
try:
|
||||
return value_type(value)
|
||||
except ValueError:
|
||||
return default
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
"""
|
||||
Parse command line arguments with environment variable fallback
|
||||
|
||||
Args:
|
||||
is_uvicorn_mode: Whether running under uvicorn mode
|
||||
|
||||
Returns:
|
||||
argparse.Namespace: Parsed arguments
|
||||
"""
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="LightRAG FastAPI Server with separate working and input directories"
|
||||
)
|
||||
|
||||
# Server configuration
|
||||
parser.add_argument(
|
||||
"--host",
|
||||
default=get_env_value("HOST", "0.0.0.0"),
|
||||
help="Server host (default: from env or 0.0.0.0)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--port",
|
||||
type=int,
|
||||
default=get_env_value("PORT", 9621, int),
|
||||
help="Server port (default: from env or 9621)",
|
||||
)
|
||||
|
||||
# Directory configuration
|
||||
parser.add_argument(
|
||||
"--working-dir",
|
||||
default=get_env_value("WORKING_DIR", "./rag_storage"),
|
||||
help="Working directory for RAG storage (default: from env or ./rag_storage)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-dir",
|
||||
default=get_env_value("INPUT_DIR", "./inputs"),
|
||||
help="Directory containing input documents (default: from env or ./inputs)",
|
||||
)
|
||||
|
||||
def timeout_type(value):
|
||||
if value is None:
|
||||
return 150
|
||||
if value is None or value == "None":
|
||||
return None
|
||||
return int(value)
|
||||
|
||||
parser.add_argument(
|
||||
"--timeout",
|
||||
default=get_env_value("TIMEOUT", None, timeout_type),
|
||||
type=timeout_type,
|
||||
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
|
||||
)
|
||||
|
||||
# RAG configuration
|
||||
parser.add_argument(
|
||||
"--max-async",
|
||||
type=int,
|
||||
default=get_env_value("MAX_ASYNC", 4, int),
|
||||
help="Maximum async operations (default: from env or 4)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-tokens",
|
||||
type=int,
|
||||
default=get_env_value("MAX_TOKENS", 32768, int),
|
||||
help="Maximum token size (default: from env or 32768)",
|
||||
)
|
||||
|
||||
# Logging configuration
|
||||
parser.add_argument(
|
||||
"--log-level",
|
||||
default=get_env_value("LOG_LEVEL", "INFO"),
|
||||
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
||||
help="Logging level (default: from env or INFO)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose",
|
||||
action="store_true",
|
||||
default=get_env_value("VERBOSE", False, bool),
|
||||
help="Enable verbose debug output(only valid for DEBUG log-level)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--key",
|
||||
type=str,
|
||||
default=get_env_value("LIGHTRAG_API_KEY", None),
|
||||
help="API key for authentication. This protects lightrag server against unauthorized access",
|
||||
)
|
||||
|
||||
# Optional https parameters
|
||||
parser.add_argument(
|
||||
"--ssl",
|
||||
action="store_true",
|
||||
default=get_env_value("SSL", False, bool),
|
||||
help="Enable HTTPS (default: from env or False)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ssl-certfile",
|
||||
default=get_env_value("SSL_CERTFILE", None),
|
||||
help="Path to SSL certificate file (required if --ssl is enabled)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ssl-keyfile",
|
||||
default=get_env_value("SSL_KEYFILE", None),
|
||||
help="Path to SSL private key file (required if --ssl is enabled)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--history-turns",
|
||||
type=int,
|
||||
default=get_env_value("HISTORY_TURNS", 3, int),
|
||||
help="Number of conversation history turns to include (default: from env or 3)",
|
||||
)
|
||||
|
||||
# Search parameters
|
||||
parser.add_argument(
|
||||
"--top-k",
|
||||
type=int,
|
||||
default=get_env_value("TOP_K", 60, int),
|
||||
help="Number of most similar results to return (default: from env or 60)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cosine-threshold",
|
||||
type=float,
|
||||
default=get_env_value("COSINE_THRESHOLD", 0.2, float),
|
||||
help="Cosine similarity threshold (default: from env or 0.4)",
|
||||
)
|
||||
|
||||
# Ollama model name
|
||||
parser.add_argument(
|
||||
"--simulated-model-name",
|
||||
type=str,
|
||||
default=get_env_value(
|
||||
"SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL
|
||||
),
|
||||
help="Number of conversation history turns to include (default: from env or 3)",
|
||||
)
|
||||
|
||||
# Namespace
|
||||
parser.add_argument(
|
||||
"--namespace-prefix",
|
||||
type=str,
|
||||
default=get_env_value("NAMESPACE_PREFIX", ""),
|
||||
help="Prefix of the namespace",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--auto-scan-at-startup",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Enable automatic scanning when the program starts",
|
||||
)
|
||||
|
||||
# Server workers configuration
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=get_env_value("WORKERS", 1, int),
|
||||
help="Number of worker processes (default: from env or 1)",
|
||||
)
|
||||
|
||||
# LLM and embedding bindings
|
||||
parser.add_argument(
|
||||
"--llm-binding",
|
||||
type=str,
|
||||
default=get_env_value("LLM_BINDING", "ollama"),
|
||||
choices=["lollms", "ollama", "openai", "openai-ollama", "azure_openai"],
|
||||
help="LLM binding type (default: from env or ollama)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-binding",
|
||||
type=str,
|
||||
default=get_env_value("EMBEDDING_BINDING", "ollama"),
|
||||
choices=["lollms", "ollama", "openai", "azure_openai"],
|
||||
help="Embedding binding type (default: from env or ollama)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# convert relative path to absolute path
|
||||
args.working_dir = os.path.abspath(args.working_dir)
|
||||
args.input_dir = os.path.abspath(args.input_dir)
|
||||
|
||||
# Inject storage configuration from environment variables
|
||||
args.kv_storage = get_env_value(
|
||||
"LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE
|
||||
)
|
||||
args.doc_status_storage = get_env_value(
|
||||
"LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE
|
||||
)
|
||||
args.graph_storage = get_env_value(
|
||||
"LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE
|
||||
)
|
||||
args.vector_storage = get_env_value(
|
||||
"LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE
|
||||
)
|
||||
|
||||
# Get MAX_PARALLEL_INSERT from environment
|
||||
args.max_parallel_insert = get_env_value("MAX_PARALLEL_INSERT", 2, int)
|
||||
|
||||
# Handle openai-ollama special case
|
||||
if args.llm_binding == "openai-ollama":
|
||||
args.llm_binding = "openai"
|
||||
args.embedding_binding = "ollama"
|
||||
|
||||
args.llm_binding_host = get_env_value(
|
||||
"LLM_BINDING_HOST", get_default_host(args.llm_binding)
|
||||
)
|
||||
args.embedding_binding_host = get_env_value(
|
||||
"EMBEDDING_BINDING_HOST", get_default_host(args.embedding_binding)
|
||||
)
|
||||
args.llm_binding_api_key = get_env_value("LLM_BINDING_API_KEY", None)
|
||||
args.embedding_binding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
|
||||
|
||||
# Inject model configuration
|
||||
args.llm_model = get_env_value("LLM_MODEL", "mistral-nemo:latest")
|
||||
args.embedding_model = get_env_value("EMBEDDING_MODEL", "bge-m3:latest")
|
||||
args.embedding_dim = get_env_value("EMBEDDING_DIM", 1024, int)
|
||||
args.max_embed_tokens = get_env_value("MAX_EMBED_TOKENS", 8192, int)
|
||||
|
||||
# Inject chunk configuration
|
||||
args.chunk_size = get_env_value("CHUNK_SIZE", 1200, int)
|
||||
args.chunk_overlap_size = get_env_value("CHUNK_OVERLAP_SIZE", 100, int)
|
||||
|
||||
# Inject LLM cache configuration
|
||||
args.enable_llm_cache_for_extract = get_env_value(
|
||||
"ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool
|
||||
)
|
||||
|
||||
# Inject LLM temperature configuration
|
||||
args.temperature = get_env_value("TEMPERATURE", 0.5, float)
|
||||
|
||||
# Select Document loading tool (DOCLING, DEFAULT)
|
||||
args.document_loading_engine = get_env_value("DOCUMENT_LOADING_ENGINE", "DEFAULT")
|
||||
|
||||
# For JWT Auth
|
||||
args.auth_accounts = get_env_value("AUTH_ACCOUNTS", "")
|
||||
args.token_secret = get_env_value("TOKEN_SECRET", "lightrag-jwt-default-secret")
|
||||
args.token_expire_hours = get_env_value("TOKEN_EXPIRE_HOURS", 4, int)
|
||||
args.guest_token_expire_hours = get_env_value("GUEST_TOKEN_EXPIRE_HOURS", 2, int)
|
||||
args.jwt_algorithm = get_env_value("JWT_ALGORITHM", "HS256")
|
||||
|
||||
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def update_uvicorn_mode_config():
|
||||
# If in uvicorn mode and workers > 1, force it to 1 and log warning
|
||||
if global_args.workers > 1:
|
||||
original_workers = global_args.workers
|
||||
global_args.workers = 1
|
||||
# Log warning directly here
|
||||
logging.warning(
|
||||
f"In uvicorn mode, workers parameter was set to {original_workers}. Forcing workers=1"
|
||||
)
|
||||
|
||||
|
||||
global_args = parse_args()
|
@@ -19,11 +19,14 @@ from contextlib import asynccontextmanager
|
||||
from dotenv import load_dotenv
|
||||
from lightrag.api.utils_api import (
|
||||
get_combined_auth_dependency,
|
||||
parse_args,
|
||||
get_default_host,
|
||||
display_splash_screen,
|
||||
check_env_file,
|
||||
)
|
||||
from .config import (
|
||||
global_args,
|
||||
update_uvicorn_mode_config,
|
||||
get_default_host,
|
||||
)
|
||||
import sys
|
||||
from lightrag import LightRAG, __version__ as core_version
|
||||
from lightrag.api import __api_version__
|
||||
@@ -490,7 +493,7 @@ def create_app(args):
|
||||
def get_application(args=None):
|
||||
"""Factory function for creating the FastAPI application"""
|
||||
if args is None:
|
||||
args = parse_args()
|
||||
args = global_args
|
||||
return create_app(args)
|
||||
|
||||
|
||||
@@ -611,30 +614,31 @@ def main():
|
||||
|
||||
# Configure logging before parsing args
|
||||
configure_logging()
|
||||
|
||||
args = parse_args(is_uvicorn_mode=True)
|
||||
display_splash_screen(args)
|
||||
update_uvicorn_mode_config()
|
||||
display_splash_screen(global_args)
|
||||
|
||||
# Create application instance directly instead of using factory function
|
||||
app = create_app(args)
|
||||
app = create_app(global_args)
|
||||
|
||||
# Start Uvicorn in single process mode
|
||||
uvicorn_config = {
|
||||
"app": app, # Pass application instance directly instead of string path
|
||||
"host": args.host,
|
||||
"port": args.port,
|
||||
"host": global_args.host,
|
||||
"port": global_args.port,
|
||||
"log_config": None, # Disable default config
|
||||
}
|
||||
|
||||
if args.ssl:
|
||||
if global_args.ssl:
|
||||
uvicorn_config.update(
|
||||
{
|
||||
"ssl_certfile": args.ssl_certfile,
|
||||
"ssl_keyfile": args.ssl_keyfile,
|
||||
"ssl_certfile": global_args.ssl_certfile,
|
||||
"ssl_keyfile": global_args.ssl_keyfile,
|
||||
}
|
||||
)
|
||||
|
||||
print(f"Starting Uvicorn server in single-process mode on {args.host}:{args.port}")
|
||||
print(
|
||||
f"Starting Uvicorn server in single-process mode on {global_args.host}:{global_args.port}"
|
||||
)
|
||||
uvicorn.run(**uvicorn_config)
|
||||
|
||||
|
||||
|
@@ -16,10 +16,8 @@ from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from lightrag import LightRAG
|
||||
from lightrag.base import DocProcessingStatus, DocStatus
|
||||
from lightrag.api.utils_api import (
|
||||
get_combined_auth_dependency,
|
||||
global_args,
|
||||
)
|
||||
from lightrag.api.utils_api import get_combined_auth_dependency
|
||||
from ..config import global_args
|
||||
|
||||
router = APIRouter(
|
||||
prefix="/documents",
|
||||
@@ -472,7 +470,7 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
)
|
||||
return False
|
||||
case ".pdf":
|
||||
if global_args["main_args"].document_loading_engine == "DOCLING":
|
||||
if global_args.document_loading_engine == "DOCLING":
|
||||
if not pm.is_installed("docling"): # type: ignore
|
||||
pm.install("docling")
|
||||
from docling.document_converter import DocumentConverter # type: ignore
|
||||
@@ -491,7 +489,7 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
for page in reader.pages:
|
||||
content += page.extract_text() + "\n"
|
||||
case ".docx":
|
||||
if global_args["main_args"].document_loading_engine == "DOCLING":
|
||||
if global_args.document_loading_engine == "DOCLING":
|
||||
if not pm.is_installed("docling"): # type: ignore
|
||||
pm.install("docling")
|
||||
from docling.document_converter import DocumentConverter # type: ignore
|
||||
@@ -511,7 +509,7 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
[paragraph.text for paragraph in doc.paragraphs]
|
||||
)
|
||||
case ".pptx":
|
||||
if global_args["main_args"].document_loading_engine == "DOCLING":
|
||||
if global_args.document_loading_engine == "DOCLING":
|
||||
if not pm.is_installed("docling"): # type: ignore
|
||||
pm.install("docling")
|
||||
from docling.document_converter import DocumentConverter # type: ignore
|
||||
@@ -532,7 +530,7 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
if hasattr(shape, "text"):
|
||||
content += shape.text + "\n"
|
||||
case ".xlsx":
|
||||
if global_args["main_args"].document_loading_engine == "DOCLING":
|
||||
if global_args.document_loading_engine == "DOCLING":
|
||||
if not pm.is_installed("docling"): # type: ignore
|
||||
pm.install("docling")
|
||||
from docling.document_converter import DocumentConverter # type: ignore
|
||||
@@ -673,8 +671,8 @@ async def run_scanning_process(rag: LightRAG, doc_manager: DocumentManager):
|
||||
if not new_files:
|
||||
return
|
||||
|
||||
# Get MAX_PARALLEL_INSERT from global_args["main_args"]
|
||||
max_parallel = global_args["main_args"].max_parallel_insert
|
||||
# Get MAX_PARALLEL_INSERT from global_args
|
||||
max_parallel = global_args.max_parallel_insert
|
||||
# Calculate batch size as 2 * MAX_PARALLEL_INSERT
|
||||
batch_size = 2 * max_parallel
|
||||
|
||||
|
@@ -7,7 +7,6 @@ import argparse
|
||||
from typing import Optional, List, Tuple
|
||||
import sys
|
||||
from ascii_colors import ASCIIColors
|
||||
import logging
|
||||
from lightrag.api import __api_version__ as api_version
|
||||
from lightrag import __version__ as core_version
|
||||
from fastapi import HTTPException, Security, Request, status
|
||||
@@ -15,6 +14,7 @@ from dotenv import load_dotenv
|
||||
from fastapi.security import APIKeyHeader, OAuth2PasswordBearer
|
||||
from starlette.status import HTTP_403_FORBIDDEN
|
||||
from .auth import auth_handler
|
||||
from .config import ollama_server_infos
|
||||
from ..prompt import PROMPTS
|
||||
|
||||
|
||||
@@ -41,8 +41,6 @@ def check_env_file():
|
||||
# the OS environment variables take precedence over the .env file
|
||||
load_dotenv(dotenv_path=".env", override=False)
|
||||
|
||||
global_args = {"main_args": None}
|
||||
|
||||
# Get whitelist paths from environment variable, only once during initialization
|
||||
default_whitelist = "/health,/api/*"
|
||||
whitelist_paths = os.getenv("WHITELIST_PATHS", default_whitelist).split(",")
|
||||
@@ -63,19 +61,6 @@ for path in whitelist_paths:
|
||||
auth_configured = bool(auth_handler.accounts)
|
||||
|
||||
|
||||
class OllamaServerInfos:
|
||||
# Constants for emulated Ollama model information
|
||||
LIGHTRAG_NAME = "lightrag"
|
||||
LIGHTRAG_TAG = os.getenv("OLLAMA_EMULATING_MODEL_TAG", "latest")
|
||||
LIGHTRAG_MODEL = f"{LIGHTRAG_NAME}:{LIGHTRAG_TAG}"
|
||||
LIGHTRAG_SIZE = 7365960935 # it's a dummy value
|
||||
LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z"
|
||||
LIGHTRAG_DIGEST = "sha256:lightrag"
|
||||
|
||||
|
||||
ollama_server_infos = OllamaServerInfos()
|
||||
|
||||
|
||||
def get_combined_auth_dependency(api_key: Optional[str] = None):
|
||||
"""
|
||||
Create a combined authentication dependency that implements authentication logic
|
||||
@@ -186,299 +171,6 @@ def get_combined_auth_dependency(api_key: Optional[str] = None):
|
||||
return combined_dependency
|
||||
|
||||
|
||||
class DefaultRAGStorageConfig:
|
||||
KV_STORAGE = "JsonKVStorage"
|
||||
VECTOR_STORAGE = "NanoVectorDBStorage"
|
||||
GRAPH_STORAGE = "NetworkXStorage"
|
||||
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
|
||||
|
||||
|
||||
def get_default_host(binding_type: str) -> str:
|
||||
default_hosts = {
|
||||
"ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
|
||||
"lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
|
||||
"azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
|
||||
"openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
|
||||
}
|
||||
return default_hosts.get(
|
||||
binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
|
||||
) # fallback to ollama if unknown
|
||||
|
||||
|
||||
def get_env_value(env_key: str, default: any, value_type: type = str) -> any:
|
||||
"""
|
||||
Get value from environment variable with type conversion
|
||||
|
||||
Args:
|
||||
env_key (str): Environment variable key
|
||||
default (any): Default value if env variable is not set
|
||||
value_type (type): Type to convert the value to
|
||||
|
||||
Returns:
|
||||
any: Converted value from environment or default
|
||||
"""
|
||||
value = os.getenv(env_key)
|
||||
if value is None:
|
||||
return default
|
||||
|
||||
if value_type is bool:
|
||||
return value.lower() in ("true", "1", "yes", "t", "on")
|
||||
try:
|
||||
return value_type(value)
|
||||
except ValueError:
|
||||
return default
|
||||
|
||||
|
||||
def parse_args(is_uvicorn_mode: bool = False) -> argparse.Namespace:
|
||||
"""
|
||||
Parse command line arguments with environment variable fallback
|
||||
|
||||
Args:
|
||||
is_uvicorn_mode: Whether running under uvicorn mode
|
||||
|
||||
Returns:
|
||||
argparse.Namespace: Parsed arguments
|
||||
"""
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="LightRAG FastAPI Server with separate working and input directories"
|
||||
)
|
||||
|
||||
# Server configuration
|
||||
parser.add_argument(
|
||||
"--host",
|
||||
default=get_env_value("HOST", "0.0.0.0"),
|
||||
help="Server host (default: from env or 0.0.0.0)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--port",
|
||||
type=int,
|
||||
default=get_env_value("PORT", 9621, int),
|
||||
help="Server port (default: from env or 9621)",
|
||||
)
|
||||
|
||||
# Directory configuration
|
||||
parser.add_argument(
|
||||
"--working-dir",
|
||||
default=get_env_value("WORKING_DIR", "./rag_storage"),
|
||||
help="Working directory for RAG storage (default: from env or ./rag_storage)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-dir",
|
||||
default=get_env_value("INPUT_DIR", "./inputs"),
|
||||
help="Directory containing input documents (default: from env or ./inputs)",
|
||||
)
|
||||
|
||||
def timeout_type(value):
|
||||
if value is None:
|
||||
return 150
|
||||
if value is None or value == "None":
|
||||
return None
|
||||
return int(value)
|
||||
|
||||
parser.add_argument(
|
||||
"--timeout",
|
||||
default=get_env_value("TIMEOUT", None, timeout_type),
|
||||
type=timeout_type,
|
||||
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
|
||||
)
|
||||
|
||||
# RAG configuration
|
||||
parser.add_argument(
|
||||
"--max-async",
|
||||
type=int,
|
||||
default=get_env_value("MAX_ASYNC", 4, int),
|
||||
help="Maximum async operations (default: from env or 4)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-tokens",
|
||||
type=int,
|
||||
default=get_env_value("MAX_TOKENS", 32768, int),
|
||||
help="Maximum token size (default: from env or 32768)",
|
||||
)
|
||||
|
||||
# Logging configuration
|
||||
parser.add_argument(
|
||||
"--log-level",
|
||||
default=get_env_value("LOG_LEVEL", "INFO"),
|
||||
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
||||
help="Logging level (default: from env or INFO)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose",
|
||||
action="store_true",
|
||||
default=get_env_value("VERBOSE", False, bool),
|
||||
help="Enable verbose debug output(only valid for DEBUG log-level)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--key",
|
||||
type=str,
|
||||
default=get_env_value("LIGHTRAG_API_KEY", None),
|
||||
help="API key for authentication. This protects lightrag server against unauthorized access",
|
||||
)
|
||||
|
||||
# Optional https parameters
|
||||
parser.add_argument(
|
||||
"--ssl",
|
||||
action="store_true",
|
||||
default=get_env_value("SSL", False, bool),
|
||||
help="Enable HTTPS (default: from env or False)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ssl-certfile",
|
||||
default=get_env_value("SSL_CERTFILE", None),
|
||||
help="Path to SSL certificate file (required if --ssl is enabled)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ssl-keyfile",
|
||||
default=get_env_value("SSL_KEYFILE", None),
|
||||
help="Path to SSL private key file (required if --ssl is enabled)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--history-turns",
|
||||
type=int,
|
||||
default=get_env_value("HISTORY_TURNS", 3, int),
|
||||
help="Number of conversation history turns to include (default: from env or 3)",
|
||||
)
|
||||
|
||||
# Search parameters
|
||||
parser.add_argument(
|
||||
"--top-k",
|
||||
type=int,
|
||||
default=get_env_value("TOP_K", 60, int),
|
||||
help="Number of most similar results to return (default: from env or 60)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cosine-threshold",
|
||||
type=float,
|
||||
default=get_env_value("COSINE_THRESHOLD", 0.2, float),
|
||||
help="Cosine similarity threshold (default: from env or 0.4)",
|
||||
)
|
||||
|
||||
# Ollama model name
|
||||
parser.add_argument(
|
||||
"--simulated-model-name",
|
||||
type=str,
|
||||
default=get_env_value(
|
||||
"SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL
|
||||
),
|
||||
help="Number of conversation history turns to include (default: from env or 3)",
|
||||
)
|
||||
|
||||
# Namespace
|
||||
parser.add_argument(
|
||||
"--namespace-prefix",
|
||||
type=str,
|
||||
default=get_env_value("NAMESPACE_PREFIX", ""),
|
||||
help="Prefix of the namespace",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--auto-scan-at-startup",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Enable automatic scanning when the program starts",
|
||||
)
|
||||
|
||||
# Server workers configuration
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=get_env_value("WORKERS", 1, int),
|
||||
help="Number of worker processes (default: from env or 1)",
|
||||
)
|
||||
|
||||
# LLM and embedding bindings
|
||||
parser.add_argument(
|
||||
"--llm-binding",
|
||||
type=str,
|
||||
default=get_env_value("LLM_BINDING", "ollama"),
|
||||
choices=["lollms", "ollama", "openai", "openai-ollama", "azure_openai"],
|
||||
help="LLM binding type (default: from env or ollama)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-binding",
|
||||
type=str,
|
||||
default=get_env_value("EMBEDDING_BINDING", "ollama"),
|
||||
choices=["lollms", "ollama", "openai", "azure_openai"],
|
||||
help="Embedding binding type (default: from env or ollama)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# If in uvicorn mode and workers > 1, force it to 1 and log warning
|
||||
if is_uvicorn_mode and args.workers > 1:
|
||||
original_workers = args.workers
|
||||
args.workers = 1
|
||||
# Log warning directly here
|
||||
logging.warning(
|
||||
f"In uvicorn mode, workers parameter was set to {original_workers}. Forcing workers=1"
|
||||
)
|
||||
|
||||
# convert relative path to absolute path
|
||||
args.working_dir = os.path.abspath(args.working_dir)
|
||||
args.input_dir = os.path.abspath(args.input_dir)
|
||||
|
||||
# Inject storage configuration from environment variables
|
||||
args.kv_storage = get_env_value(
|
||||
"LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE
|
||||
)
|
||||
args.doc_status_storage = get_env_value(
|
||||
"LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE
|
||||
)
|
||||
args.graph_storage = get_env_value(
|
||||
"LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE
|
||||
)
|
||||
args.vector_storage = get_env_value(
|
||||
"LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE
|
||||
)
|
||||
|
||||
# Get MAX_PARALLEL_INSERT from environment
|
||||
args.max_parallel_insert = get_env_value("MAX_PARALLEL_INSERT", 2, int)
|
||||
|
||||
# Handle openai-ollama special case
|
||||
if args.llm_binding == "openai-ollama":
|
||||
args.llm_binding = "openai"
|
||||
args.embedding_binding = "ollama"
|
||||
|
||||
args.llm_binding_host = get_env_value(
|
||||
"LLM_BINDING_HOST", get_default_host(args.llm_binding)
|
||||
)
|
||||
args.embedding_binding_host = get_env_value(
|
||||
"EMBEDDING_BINDING_HOST", get_default_host(args.embedding_binding)
|
||||
)
|
||||
args.llm_binding_api_key = get_env_value("LLM_BINDING_API_KEY", None)
|
||||
args.embedding_binding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
|
||||
|
||||
# Inject model configuration
|
||||
args.llm_model = get_env_value("LLM_MODEL", "mistral-nemo:latest")
|
||||
args.embedding_model = get_env_value("EMBEDDING_MODEL", "bge-m3:latest")
|
||||
args.embedding_dim = get_env_value("EMBEDDING_DIM", 1024, int)
|
||||
args.max_embed_tokens = get_env_value("MAX_EMBED_TOKENS", 8192, int)
|
||||
|
||||
# Inject chunk configuration
|
||||
args.chunk_size = get_env_value("CHUNK_SIZE", 1200, int)
|
||||
args.chunk_overlap_size = get_env_value("CHUNK_OVERLAP_SIZE", 100, int)
|
||||
|
||||
# Inject LLM cache configuration
|
||||
args.enable_llm_cache_for_extract = get_env_value(
|
||||
"ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool
|
||||
)
|
||||
|
||||
# Inject LLM temperature configuration
|
||||
args.temperature = get_env_value("TEMPERATURE", 0.5, float)
|
||||
|
||||
# Select Document loading tool (DOCLING, DEFAULT)
|
||||
args.document_loading_engine = get_env_value("DOCUMENT_LOADING_ENGINE", "DEFAULT")
|
||||
|
||||
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
|
||||
|
||||
global_args["main_args"] = args
|
||||
return args
|
||||
|
||||
|
||||
def display_splash_screen(args: argparse.Namespace) -> None:
|
||||
"""
|
||||
Display a colorful splash screen showing LightRAG server configuration
|
||||
@@ -519,8 +211,10 @@ def display_splash_screen(args: argparse.Namespace) -> None:
|
||||
ASCIIColors.yellow(f"{args.verbose}")
|
||||
ASCIIColors.white(" ├─ History Turns: ", end="")
|
||||
ASCIIColors.yellow(f"{args.history_turns}")
|
||||
ASCIIColors.white(" └─ API Key: ", end="")
|
||||
ASCIIColors.white(" ├─ API Key: ", end="")
|
||||
ASCIIColors.yellow("Set" if args.key else "Not Set")
|
||||
ASCIIColors.white(" └─ JWT Auth: ", end="")
|
||||
ASCIIColors.yellow("Enabled" if args.auth_accounts else "Disabled")
|
||||
|
||||
# Directory Configuration
|
||||
ASCIIColors.magenta("\n📂 Directory Configuration:")
|
||||
@@ -628,6 +322,11 @@ def display_splash_screen(args: argparse.Namespace) -> None:
|
||||
ASCIIColors.white(""" API Key authentication is enabled.
|
||||
Make sure to include the X-API-Key header in all your requests.
|
||||
""")
|
||||
if args.auth_accounts:
|
||||
ASCIIColors.yellow("\n⚠️ Security Notice:")
|
||||
ASCIIColors.white(""" JWT authentication is enabled.
|
||||
Make sure to login before making the request, and include the 'Authorization' in the header.
|
||||
""")
|
||||
|
||||
# Ensure splash output flush to system log
|
||||
sys.stdout.flush()
|
||||
|
Reference in New Issue
Block a user