split lightrag_servery.py to smaller files
This commit is contained in:
File diff suppressed because it is too large
Load Diff
10
lightrag/api/routers/__init__.py
Normal file
10
lightrag/api/routers/__init__.py
Normal file
@@ -0,0 +1,10 @@
|
||||
"""
|
||||
This module contains all the routers for the LightRAG API.
|
||||
"""
|
||||
|
||||
from .document_routes import router as document_router
|
||||
from .query_routes import router as query_router
|
||||
from .graph_routes import router as graph_router
|
||||
from .ollama_api import OllamaAPI
|
||||
|
||||
__all__ = ["document_router", "query_router", "graph_router", "OllamaAPI"]
|
667
lightrag/api/routers/document_routes.py
Normal file
667
lightrag/api/routers/document_routes.py
Normal file
@@ -0,0 +1,667 @@
|
||||
"""
|
||||
This module contains all document-related routes for the LightRAG API.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
import aiofiles
|
||||
import shutil
|
||||
import traceback
|
||||
import pipmaster as pm
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Any
|
||||
|
||||
from fastapi import APIRouter, BackgroundTasks, Depends, File, HTTPException, UploadFile
|
||||
from fastapi.security import APIKeyHeader
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from starlette.status import HTTP_403_FORBIDDEN
|
||||
|
||||
from lightrag.base import DocProcessingStatus, DocStatus
|
||||
from ..utils_api import get_api_key_dependency
|
||||
|
||||
|
||||
router = APIRouter(prefix="/documents", tags=["documents"])
|
||||
|
||||
# Global progress tracker
|
||||
scan_progress: Dict = {
|
||||
"is_scanning": False,
|
||||
"current_file": "",
|
||||
"indexed_count": 0,
|
||||
"total_files": 0,
|
||||
"progress": 0,
|
||||
}
|
||||
|
||||
# Lock for thread-safe operations
|
||||
progress_lock = asyncio.Lock()
|
||||
|
||||
# Temporary file prefix
|
||||
temp_prefix = "__tmp__"
|
||||
|
||||
class InsertTextRequest(BaseModel):
|
||||
text: str = Field(
|
||||
min_length=1,
|
||||
description="The text to insert",
|
||||
)
|
||||
|
||||
@field_validator("text", mode="after")
|
||||
@classmethod
|
||||
def strip_after(cls, text: str) -> str:
|
||||
return text.strip()
|
||||
|
||||
class InsertTextsRequest(BaseModel):
|
||||
texts: list[str] = Field(
|
||||
min_length=1,
|
||||
description="The texts to insert",
|
||||
)
|
||||
|
||||
@field_validator("texts", mode="after")
|
||||
@classmethod
|
||||
def strip_after(cls, texts: list[str]) -> list[str]:
|
||||
return [text.strip() for text in texts]
|
||||
|
||||
class InsertResponse(BaseModel):
|
||||
status: str = Field(description="Status of the operation")
|
||||
message: str = Field(description="Message describing the operation result")
|
||||
|
||||
class DocStatusResponse(BaseModel):
|
||||
@staticmethod
|
||||
def format_datetime(dt: Any) -> Optional[str]:
|
||||
if dt is None:
|
||||
return None
|
||||
if isinstance(dt, str):
|
||||
return dt
|
||||
return dt.isoformat()
|
||||
|
||||
id: str
|
||||
content_summary: str
|
||||
content_length: int
|
||||
status: DocStatus
|
||||
created_at: str
|
||||
updated_at: str
|
||||
chunks_count: Optional[int] = None
|
||||
error: Optional[str] = None
|
||||
metadata: Optional[dict[str, Any]] = None
|
||||
|
||||
class DocsStatusesResponse(BaseModel):
|
||||
statuses: Dict[DocStatus, List[DocStatusResponse]] = {}
|
||||
|
||||
class DocumentManager:
|
||||
def __init__(
|
||||
self,
|
||||
input_dir: str,
|
||||
supported_extensions: tuple = (
|
||||
".txt",
|
||||
".md",
|
||||
".pdf",
|
||||
".docx",
|
||||
".pptx",
|
||||
".xlsx",
|
||||
),
|
||||
):
|
||||
self.input_dir = Path(input_dir)
|
||||
self.supported_extensions = supported_extensions
|
||||
self.indexed_files = set()
|
||||
|
||||
# Create input directory if it doesn't exist
|
||||
self.input_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def scan_directory_for_new_files(self) -> List[Path]:
|
||||
new_files = []
|
||||
for ext in self.supported_extensions:
|
||||
logging.info(f"Scanning for {ext} files in {self.input_dir}")
|
||||
for file_path in self.input_dir.rglob(f"*{ext}"):
|
||||
if file_path not in self.indexed_files:
|
||||
new_files.append(file_path)
|
||||
return new_files
|
||||
|
||||
def scan_directory(self) -> List[Path]:
|
||||
new_files = []
|
||||
for ext in self.supported_extensions:
|
||||
for file_path in self.input_dir.rglob(f"*{ext}"):
|
||||
new_files.append(file_path)
|
||||
return new_files
|
||||
|
||||
def mark_as_indexed(self, file_path: Path):
|
||||
self.indexed_files.add(file_path)
|
||||
|
||||
def is_supported_file(self, filename: str) -> bool:
|
||||
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
||||
|
||||
async def pipeline_enqueue_file(rag, file_path: Path) -> bool:
|
||||
try:
|
||||
content = ""
|
||||
ext = file_path.suffix.lower()
|
||||
|
||||
file = None
|
||||
async with aiofiles.open(file_path, "rb") as f:
|
||||
file = await f.read()
|
||||
|
||||
# Process based on file type
|
||||
match ext:
|
||||
case ".txt" | ".md":
|
||||
content = file.decode("utf-8")
|
||||
case ".pdf":
|
||||
if not pm.is_installed("pypdf2"):
|
||||
pm.install("pypdf2")
|
||||
from PyPDF2 import PdfReader # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
pdf_file = BytesIO(file)
|
||||
reader = PdfReader(pdf_file)
|
||||
for page in reader.pages:
|
||||
content += page.extract_text() + "\n"
|
||||
case ".docx":
|
||||
if not pm.is_installed("docx"):
|
||||
pm.install("docx")
|
||||
from docx import Document
|
||||
from io import BytesIO
|
||||
|
||||
docx_file = BytesIO(file)
|
||||
doc = Document(docx_file)
|
||||
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
||||
case ".pptx":
|
||||
if not pm.is_installed("pptx"):
|
||||
pm.install("pptx")
|
||||
from pptx import Presentation
|
||||
from io import BytesIO
|
||||
|
||||
pptx_file = BytesIO(file)
|
||||
prs = Presentation(pptx_file)
|
||||
for slide in prs.slides:
|
||||
for shape in slide.shapes:
|
||||
if hasattr(shape, "text"):
|
||||
content += shape.text + "\n"
|
||||
case ".xlsx":
|
||||
if not pm.is_installed("openpyxl"):
|
||||
pm.install("openpyxl")
|
||||
from openpyxl import load_workbook
|
||||
from io import BytesIO
|
||||
|
||||
xlsx_file = BytesIO(file)
|
||||
wb = load_workbook(xlsx_file)
|
||||
for sheet in wb:
|
||||
content += f"Sheet: {sheet.title}\n"
|
||||
for row in sheet.iter_rows(values_only=True):
|
||||
content += "\t".join(str(cell) if cell is not None else "" for cell in row) + "\n"
|
||||
content += "\n"
|
||||
case _:
|
||||
logging.error(f"Unsupported file type: {file_path.name} (extension {ext})")
|
||||
return False
|
||||
|
||||
# Insert into the RAG queue
|
||||
if content:
|
||||
await rag.apipeline_enqueue_documents(content)
|
||||
logging.info(f"Successfully fetched and enqueued file: {file_path.name}")
|
||||
return True
|
||||
else:
|
||||
logging.error(f"No content could be extracted from file: {file_path.name}")
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error processing or enqueueing file {file_path.name}: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
finally:
|
||||
if file_path.name.startswith(temp_prefix):
|
||||
try:
|
||||
file_path.unlink()
|
||||
except Exception as e:
|
||||
logging.error(f"Error deleting file {file_path}: {str(e)}")
|
||||
return False
|
||||
|
||||
async def pipeline_index_file(rag, file_path: Path):
|
||||
"""Index a file
|
||||
|
||||
Args:
|
||||
rag: LightRAG instance
|
||||
file_path: Path to the saved file
|
||||
"""
|
||||
try:
|
||||
content = ""
|
||||
ext = file_path.suffix.lower()
|
||||
|
||||
file = None
|
||||
async with aiofiles.open(file_path, "rb") as f:
|
||||
file = await f.read()
|
||||
|
||||
# Process based on file type
|
||||
match ext:
|
||||
case ".txt" | ".md":
|
||||
content = file.decode("utf-8")
|
||||
case ".pdf":
|
||||
if not pm.is_installed("pypdf2"):
|
||||
pm.install("pypdf2")
|
||||
from PyPDF2 import PdfReader # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
pdf_file = BytesIO(file)
|
||||
reader = PdfReader(pdf_file)
|
||||
for page in reader.pages:
|
||||
content += page.extract_text() + "\n"
|
||||
case ".docx":
|
||||
if not pm.is_installed("docx"):
|
||||
pm.install("docx")
|
||||
from docx import Document
|
||||
from io import BytesIO
|
||||
|
||||
docx_file = BytesIO(file)
|
||||
doc = Document(docx_file)
|
||||
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
||||
case ".pptx":
|
||||
if not pm.is_installed("pptx"):
|
||||
pm.install("pptx")
|
||||
from pptx import Presentation
|
||||
from io import BytesIO
|
||||
|
||||
pptx_file = BytesIO(file)
|
||||
prs = Presentation(pptx_file)
|
||||
for slide in prs.slides:
|
||||
for shape in slide.shapes:
|
||||
if hasattr(shape, "text"):
|
||||
content += shape.text + "\n"
|
||||
case ".xlsx":
|
||||
if not pm.is_installed("openpyxl"):
|
||||
pm.install("openpyxl")
|
||||
from openpyxl import load_workbook
|
||||
from io import BytesIO
|
||||
|
||||
xlsx_file = BytesIO(file)
|
||||
wb = load_workbook(xlsx_file)
|
||||
for sheet in wb:
|
||||
content += f"Sheet: {sheet.title}\n"
|
||||
for row in sheet.iter_rows(values_only=True):
|
||||
content += "\t".join(str(cell) if cell is not None else "" for cell in row) + "\n"
|
||||
content += "\n"
|
||||
case _:
|
||||
logging.error(f"Unsupported file type: {file_path.name} (extension {ext})")
|
||||
return
|
||||
|
||||
# Insert into the RAG queue
|
||||
if content:
|
||||
await rag.apipeline_enqueue_documents(content)
|
||||
await rag.apipeline_process_enqueue_documents()
|
||||
logging.info(f"Successfully indexed file: {file_path.name}")
|
||||
else:
|
||||
logging.error(f"No content could be extracted from file: {file_path.name}")
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error indexing file {file_path.name}: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
|
||||
async def pipeline_index_files(rag, file_paths: List[Path]):
|
||||
if not file_paths:
|
||||
return
|
||||
try:
|
||||
enqueued = False
|
||||
if len(file_paths) == 1:
|
||||
enqueued = await pipeline_enqueue_file(rag, file_paths[0])
|
||||
else:
|
||||
tasks = [pipeline_enqueue_file(rag, path) for path in file_paths]
|
||||
enqueued = any(await asyncio.gather(*tasks))
|
||||
|
||||
if enqueued:
|
||||
await rag.apipeline_process_enqueue_documents()
|
||||
except Exception as e:
|
||||
logging.error(f"Error indexing files: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
|
||||
async def pipeline_index_texts(rag, texts: List[str]):
|
||||
if not texts:
|
||||
return
|
||||
await rag.apipeline_enqueue_documents(texts)
|
||||
await rag.apipeline_process_enqueue_documents()
|
||||
|
||||
async def save_temp_file(input_dir: Path, file: UploadFile = File(...)) -> Path:
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
unique_filename = f"{temp_prefix}{timestamp}_{file.filename}"
|
||||
temp_path = input_dir / "temp" / unique_filename
|
||||
temp_path.parent.mkdir(exist_ok=True)
|
||||
with open(temp_path, "wb") as buffer:
|
||||
shutil.copyfileobj(file.file, buffer)
|
||||
return temp_path
|
||||
|
||||
async def run_scanning_process(rag, doc_manager: DocumentManager):
|
||||
"""Background task to scan and index documents"""
|
||||
try:
|
||||
new_files = doc_manager.scan_directory_for_new_files()
|
||||
scan_progress["total_files"] = len(new_files)
|
||||
|
||||
logging.info(f"Found {len(new_files)} new files to index.")
|
||||
for file_path in new_files:
|
||||
try:
|
||||
async with progress_lock:
|
||||
scan_progress["current_file"] = os.path.basename(file_path)
|
||||
|
||||
await pipeline_index_file(rag, file_path)
|
||||
|
||||
async with progress_lock:
|
||||
scan_progress["indexed_count"] += 1
|
||||
scan_progress["progress"] = (
|
||||
scan_progress["indexed_count"] / scan_progress["total_files"]
|
||||
) * 100
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error during scanning process: {str(e)}")
|
||||
finally:
|
||||
async with progress_lock:
|
||||
scan_progress["is_scanning"] = False
|
||||
|
||||
def create_document_routes(rag, doc_manager: DocumentManager, api_key: Optional[str] = None):
|
||||
optional_api_key = get_api_key_dependency(api_key)
|
||||
|
||||
@router.post("/scan", dependencies=[Depends(optional_api_key)])
|
||||
async def scan_for_new_documents(background_tasks: BackgroundTasks):
|
||||
"""
|
||||
Trigger the scanning process for new documents.
|
||||
|
||||
This endpoint initiates a background task that scans the input directory for new documents
|
||||
and processes them. If a scanning process is already running, it returns a status indicating
|
||||
that fact.
|
||||
|
||||
Args:
|
||||
background_tasks (BackgroundTasks): FastAPI background tasks handler
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing the scanning status
|
||||
"""
|
||||
async with progress_lock:
|
||||
if scan_progress["is_scanning"]:
|
||||
return {"status": "already_scanning"}
|
||||
|
||||
scan_progress["is_scanning"] = True
|
||||
scan_progress["indexed_count"] = 0
|
||||
scan_progress["progress"] = 0
|
||||
|
||||
background_tasks.add_task(run_scanning_process, rag, doc_manager)
|
||||
return {"status": "scanning_started"}
|
||||
|
||||
@router.get("/scan-progress")
|
||||
async def get_scan_progress():
|
||||
"""
|
||||
Get the current progress of the document scanning process.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing the current scanning progress information including:
|
||||
- is_scanning: Whether a scan is currently in progress
|
||||
- current_file: The file currently being processed
|
||||
- indexed_count: Number of files indexed so far
|
||||
- total_files: Total number of files to process
|
||||
- progress: Percentage of completion
|
||||
"""
|
||||
async with progress_lock:
|
||||
return scan_progress
|
||||
|
||||
@router.post("/upload", dependencies=[Depends(optional_api_key)])
|
||||
async def upload_to_input_dir(
|
||||
background_tasks: BackgroundTasks, file: UploadFile = File(...)
|
||||
):
|
||||
"""
|
||||
Upload a file to the input directory and index it.
|
||||
|
||||
This API endpoint accepts a file through an HTTP POST request, checks if the
|
||||
uploaded file is of a supported type, saves it in the specified input directory,
|
||||
indexes it for retrieval, and returns a success status with relevant details.
|
||||
|
||||
Args:
|
||||
background_tasks: FastAPI BackgroundTasks for async processing
|
||||
file (UploadFile): The file to be uploaded. It must have an allowed extension.
|
||||
|
||||
Returns:
|
||||
InsertResponse: A response object containing the upload status and a message.
|
||||
|
||||
Raises:
|
||||
HTTPException: If the file type is not supported (400) or other errors occur (500).
|
||||
"""
|
||||
try:
|
||||
if not doc_manager.is_supported_file(file.filename):
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
||||
)
|
||||
|
||||
file_path = doc_manager.input_dir / file.filename
|
||||
with open(file_path, "wb") as buffer:
|
||||
shutil.copyfileobj(file.file, buffer)
|
||||
|
||||
background_tasks.add_task(pipeline_index_file, rag, file_path)
|
||||
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message=f"File '{file.filename}' uploaded successfully. Processing will continue in background.",
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error /documents/upload: {file.filename}: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@router.post("/text", response_model=InsertResponse, dependencies=[Depends(optional_api_key)])
|
||||
async def insert_text(request: InsertTextRequest, background_tasks: BackgroundTasks):
|
||||
"""
|
||||
Insert text into the RAG system.
|
||||
|
||||
This endpoint allows you to insert text data into the RAG system for later retrieval
|
||||
and use in generating responses.
|
||||
|
||||
Args:
|
||||
request (InsertTextRequest): The request body containing the text to be inserted.
|
||||
background_tasks: FastAPI BackgroundTasks for async processing
|
||||
|
||||
Returns:
|
||||
InsertResponse: A response object containing the status of the operation.
|
||||
|
||||
Raises:
|
||||
HTTPException: If an error occurs during text processing (500).
|
||||
"""
|
||||
try:
|
||||
background_tasks.add_task(pipeline_index_texts, rag, [request.text])
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="Text successfully received. Processing will continue in background.",
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error /documents/text: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@router.post("/texts", response_model=InsertResponse, dependencies=[Depends(optional_api_key)])
|
||||
async def insert_texts(request: InsertTextsRequest, background_tasks: BackgroundTasks):
|
||||
"""
|
||||
Insert multiple texts into the RAG system.
|
||||
|
||||
This endpoint allows you to insert multiple text entries into the RAG system
|
||||
in a single request.
|
||||
|
||||
Args:
|
||||
request (InsertTextsRequest): The request body containing the list of texts.
|
||||
background_tasks: FastAPI BackgroundTasks for async processing
|
||||
|
||||
Returns:
|
||||
InsertResponse: A response object containing the status of the operation.
|
||||
|
||||
Raises:
|
||||
HTTPException: If an error occurs during text processing (500).
|
||||
"""
|
||||
try:
|
||||
background_tasks.add_task(pipeline_index_texts, rag, request.texts)
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="Text successfully received. Processing will continue in background.",
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error /documents/text: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@router.post("/file", response_model=InsertResponse, dependencies=[Depends(optional_api_key)])
|
||||
async def insert_file(background_tasks: BackgroundTasks, file: UploadFile = File(...)):
|
||||
"""
|
||||
Insert a file directly into the RAG system.
|
||||
|
||||
This endpoint accepts a file upload and processes it for inclusion in the RAG system.
|
||||
The file is saved temporarily and processed in the background.
|
||||
|
||||
Args:
|
||||
background_tasks: FastAPI BackgroundTasks for async processing
|
||||
file (UploadFile): The file to be processed
|
||||
|
||||
Returns:
|
||||
InsertResponse: A response object containing the status of the operation.
|
||||
|
||||
Raises:
|
||||
HTTPException: If the file type is not supported (400) or other errors occur (500).
|
||||
"""
|
||||
try:
|
||||
if not doc_manager.is_supported_file(file.filename):
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
||||
)
|
||||
|
||||
temp_path = await save_temp_file(doc_manager.input_dir, file)
|
||||
background_tasks.add_task(pipeline_index_file, rag, temp_path)
|
||||
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message=f"File '{file.filename}' saved successfully. Processing will continue in background.",
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Error /documents/file: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@router.post("/file_batch", response_model=InsertResponse, dependencies=[Depends(optional_api_key)])
|
||||
async def insert_batch(background_tasks: BackgroundTasks, files: List[UploadFile] = File(...)):
|
||||
"""
|
||||
Process multiple files in batch mode.
|
||||
|
||||
This endpoint allows uploading and processing multiple files simultaneously.
|
||||
It handles partial successes and provides detailed feedback about failed files.
|
||||
|
||||
Args:
|
||||
background_tasks: FastAPI BackgroundTasks for async processing
|
||||
files (List[UploadFile]): List of files to process
|
||||
|
||||
Returns:
|
||||
InsertResponse: A response object containing:
|
||||
- status: "success", "partial_success", or "failure"
|
||||
- message: Detailed information about the operation results
|
||||
|
||||
Raises:
|
||||
HTTPException: If an error occurs during processing (500).
|
||||
"""
|
||||
try:
|
||||
inserted_count = 0
|
||||
failed_files = []
|
||||
temp_files = []
|
||||
|
||||
for file in files:
|
||||
if doc_manager.is_supported_file(file.filename):
|
||||
temp_files.append(await save_temp_file(doc_manager.input_dir, file))
|
||||
inserted_count += 1
|
||||
else:
|
||||
failed_files.append(f"{file.filename} (unsupported type)")
|
||||
|
||||
if temp_files:
|
||||
background_tasks.add_task(pipeline_index_files, rag, temp_files)
|
||||
|
||||
if inserted_count == len(files):
|
||||
status = "success"
|
||||
status_message = f"Successfully inserted all {inserted_count} documents"
|
||||
elif inserted_count > 0:
|
||||
status = "partial_success"
|
||||
status_message = f"Successfully inserted {inserted_count} out of {len(files)} documents"
|
||||
if failed_files:
|
||||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||
else:
|
||||
status = "failure"
|
||||
status_message = "No documents were successfully inserted"
|
||||
if failed_files:
|
||||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||
|
||||
return InsertResponse(status=status, message=status_message)
|
||||
except Exception as e:
|
||||
logging.error(f"Error /documents/batch: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@router.delete("", response_model=InsertResponse, dependencies=[Depends(optional_api_key)])
|
||||
async def clear_documents():
|
||||
"""
|
||||
Clear all documents from the RAG system.
|
||||
|
||||
This endpoint deletes all text chunks, entities vector database, and relationships
|
||||
vector database, effectively clearing all documents from the RAG system.
|
||||
|
||||
Returns:
|
||||
InsertResponse: A response object containing the status and message.
|
||||
|
||||
Raises:
|
||||
HTTPException: If an error occurs during the clearing process (500).
|
||||
"""
|
||||
try:
|
||||
rag.text_chunks = []
|
||||
rag.entities_vdb = None
|
||||
rag.relationships_vdb = None
|
||||
return InsertResponse(status="success", message="All documents cleared successfully")
|
||||
except Exception as e:
|
||||
logging.error(f"Error DELETE /documents: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@router.get("", dependencies=[Depends(optional_api_key)])
|
||||
async def documents() -> DocsStatusesResponse:
|
||||
"""
|
||||
Get the status of all documents in the system.
|
||||
|
||||
This endpoint retrieves the current status of all documents, grouped by their
|
||||
processing status (PENDING, PROCESSING, PROCESSED, FAILED).
|
||||
|
||||
Returns:
|
||||
DocsStatusesResponse: A response object containing a dictionary where keys are
|
||||
DocStatus values and values are lists of DocStatusResponse
|
||||
objects representing documents in each status category.
|
||||
|
||||
Raises:
|
||||
HTTPException: If an error occurs while retrieving document statuses (500).
|
||||
"""
|
||||
try:
|
||||
statuses = (
|
||||
DocStatus.PENDING,
|
||||
DocStatus.PROCESSING,
|
||||
DocStatus.PROCESSED,
|
||||
DocStatus.FAILED,
|
||||
)
|
||||
|
||||
tasks = [rag.get_docs_by_status(status) for status in statuses]
|
||||
results: List[Dict[str, DocProcessingStatus]] = await asyncio.gather(*tasks)
|
||||
|
||||
response = DocsStatusesResponse()
|
||||
|
||||
for idx, result in enumerate(results):
|
||||
status = statuses[idx]
|
||||
for doc_id, doc_status in result.items():
|
||||
if status not in response.statuses:
|
||||
response.statuses[status] = []
|
||||
response.statuses[status].append(
|
||||
DocStatusResponse(
|
||||
id=doc_id,
|
||||
content_summary=doc_status.content_summary,
|
||||
content_length=doc_status.content_length,
|
||||
status=doc_status.status,
|
||||
created_at=DocStatusResponse.format_datetime(doc_status.created_at),
|
||||
updated_at=DocStatusResponse.format_datetime(doc_status.updated_at),
|
||||
chunks_count=doc_status.chunks_count,
|
||||
error=doc_status.error,
|
||||
metadata=doc_status.metadata,
|
||||
)
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
logging.error(f"Error GET /documents: {str(e)}")
|
||||
logging.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
return router
|
26
lightrag/api/routers/graph_routes.py
Normal file
26
lightrag/api/routers/graph_routes.py
Normal file
@@ -0,0 +1,26 @@
|
||||
"""
|
||||
This module contains all graph-related routes for the LightRAG API.
|
||||
"""
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException
|
||||
|
||||
from ..utils_api import get_api_key_dependency
|
||||
|
||||
router = APIRouter(tags=["graph"])
|
||||
|
||||
def create_graph_routes(rag, api_key: Optional[str] = None):
|
||||
optional_api_key = get_api_key_dependency(api_key)
|
||||
|
||||
@router.get("/graph/label/list", dependencies=[Depends(optional_api_key)])
|
||||
async def get_graph_labels():
|
||||
"""Get all graph labels"""
|
||||
return await rag.get_graph_labels()
|
||||
|
||||
@router.get("/graphs", dependencies=[Depends(optional_api_key)])
|
||||
async def get_knowledge_graph(label: str):
|
||||
"""Get knowledge graph for a specific label"""
|
||||
return await rag.get_knowledge_graph(nodel_label=label, max_depth=100)
|
||||
|
||||
return router
|
225
lightrag/api/routers/query_routes.py
Normal file
225
lightrag/api/routers/query_routes.py
Normal file
@@ -0,0 +1,225 @@
|
||||
"""
|
||||
This module contains all query-related routes for the LightRAG API.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import traceback
|
||||
from typing import Any, Dict, List, Literal, Optional
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException
|
||||
from lightrag.base import QueryParam
|
||||
from ..utils_api import get_api_key_dependency
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from ascii_colors import trace_exception
|
||||
|
||||
router = APIRouter(tags=["query"])
|
||||
|
||||
class QueryRequest(BaseModel):
|
||||
query: str = Field(
|
||||
min_length=1,
|
||||
description="The query text",
|
||||
)
|
||||
|
||||
mode: Literal["local", "global", "hybrid", "naive", "mix"] = Field(
|
||||
default="hybrid",
|
||||
description="Query mode",
|
||||
)
|
||||
|
||||
only_need_context: Optional[bool] = Field(
|
||||
default=None,
|
||||
description="If True, only returns the retrieved context without generating a response.",
|
||||
)
|
||||
|
||||
only_need_prompt: Optional[bool] = Field(
|
||||
default=None,
|
||||
description="If True, only returns the generated prompt without producing a response.",
|
||||
)
|
||||
|
||||
response_type: Optional[str] = Field(
|
||||
min_length=1,
|
||||
default=None,
|
||||
description="Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'.",
|
||||
)
|
||||
|
||||
top_k: Optional[int] = Field(
|
||||
ge=1,
|
||||
default=None,
|
||||
description="Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode.",
|
||||
)
|
||||
|
||||
max_token_for_text_unit: Optional[int] = Field(
|
||||
gt=1,
|
||||
default=None,
|
||||
description="Maximum number of tokens allowed for each retrieved text chunk.",
|
||||
)
|
||||
|
||||
max_token_for_global_context: Optional[int] = Field(
|
||||
gt=1,
|
||||
default=None,
|
||||
description="Maximum number of tokens allocated for relationship descriptions in global retrieval.",
|
||||
)
|
||||
|
||||
max_token_for_local_context: Optional[int] = Field(
|
||||
gt=1,
|
||||
default=None,
|
||||
description="Maximum number of tokens allocated for entity descriptions in local retrieval.",
|
||||
)
|
||||
|
||||
hl_keywords: Optional[List[str]] = Field(
|
||||
default=None,
|
||||
description="List of high-level keywords to prioritize in retrieval.",
|
||||
)
|
||||
|
||||
ll_keywords: Optional[List[str]] = Field(
|
||||
default=None,
|
||||
description="List of low-level keywords to refine retrieval focus.",
|
||||
)
|
||||
|
||||
conversation_history: Optional[List[Dict[str, Any]]] = Field(
|
||||
default=None,
|
||||
description="Stores past conversation history to maintain context. Format: [{'role': 'user/assistant', 'content': 'message'}].",
|
||||
)
|
||||
|
||||
history_turns: Optional[int] = Field(
|
||||
ge=0,
|
||||
default=None,
|
||||
description="Number of complete conversation turns (user-assistant pairs) to consider in the response context.",
|
||||
)
|
||||
|
||||
@field_validator("query", mode="after")
|
||||
@classmethod
|
||||
def query_strip_after(cls, query: str) -> str:
|
||||
return query.strip()
|
||||
|
||||
@field_validator("hl_keywords", mode="after")
|
||||
@classmethod
|
||||
def hl_keywords_strip_after(cls, hl_keywords: List[str] | None) -> List[str] | None:
|
||||
if hl_keywords is None:
|
||||
return None
|
||||
return [keyword.strip() for keyword in hl_keywords]
|
||||
|
||||
@field_validator("ll_keywords", mode="after")
|
||||
@classmethod
|
||||
def ll_keywords_strip_after(cls, ll_keywords: List[str] | None) -> List[str] | None:
|
||||
if ll_keywords is None:
|
||||
return None
|
||||
return [keyword.strip() for keyword in ll_keywords]
|
||||
|
||||
@field_validator("conversation_history", mode="after")
|
||||
@classmethod
|
||||
def conversation_history_role_check(
|
||||
cls, conversation_history: List[Dict[str, Any]] | None
|
||||
) -> List[Dict[str, Any]] | None:
|
||||
if conversation_history is None:
|
||||
return None
|
||||
for msg in conversation_history:
|
||||
if "role" not in msg or msg["role"] not in {"user", "assistant"}:
|
||||
raise ValueError(
|
||||
"Each message must have a 'role' key with value 'user' or 'assistant'."
|
||||
)
|
||||
return conversation_history
|
||||
|
||||
def to_query_params(self, is_stream: bool) -> "QueryParam":
|
||||
"""Converts a QueryRequest instance into a QueryParam instance."""
|
||||
# Use Pydantic's `.model_dump(exclude_none=True)` to remove None values automatically
|
||||
request_data = self.model_dump(exclude_none=True, exclude={"query"})
|
||||
|
||||
# Ensure `mode` and `stream` are set explicitly
|
||||
param = QueryParam(**request_data)
|
||||
param.stream = is_stream
|
||||
return param
|
||||
|
||||
class QueryResponse(BaseModel):
|
||||
response: str = Field(
|
||||
description="The generated response",
|
||||
)
|
||||
|
||||
def create_query_routes(rag, api_key: Optional[str] = None, top_k: int = 60):
|
||||
optional_api_key = get_api_key_dependency(api_key)
|
||||
|
||||
@router.post("/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)])
|
||||
async def query_text(request: QueryRequest):
|
||||
"""
|
||||
Handle a POST request at the /query endpoint to process user queries using RAG capabilities.
|
||||
|
||||
Parameters:
|
||||
request (QueryRequest): The request object containing the query parameters.
|
||||
Returns:
|
||||
QueryResponse: A Pydantic model containing the result of the query processing.
|
||||
If a string is returned (e.g., cache hit), it's directly returned.
|
||||
Otherwise, an async generator may be used to build the response.
|
||||
|
||||
Raises:
|
||||
HTTPException: Raised when an error occurs during the request handling process,
|
||||
with status code 500 and detail containing the exception message.
|
||||
"""
|
||||
try:
|
||||
param = request.to_query_params(False)
|
||||
if param.top_k is None:
|
||||
param.top_k = top_k
|
||||
response = await rag.aquery(request.query, param=param)
|
||||
|
||||
# If response is a string (e.g. cache hit), return directly
|
||||
if isinstance(response, str):
|
||||
return QueryResponse(response=response)
|
||||
|
||||
if isinstance(response, dict):
|
||||
result = json.dumps(response, indent=2)
|
||||
return QueryResponse(response=result)
|
||||
else:
|
||||
return QueryResponse(response=str(response))
|
||||
except Exception as e:
|
||||
trace_exception(e)
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@router.post("/query/stream", dependencies=[Depends(optional_api_key)])
|
||||
async def query_text_stream(request: QueryRequest):
|
||||
"""
|
||||
This endpoint performs a retrieval-augmented generation (RAG) query and streams the response.
|
||||
|
||||
Args:
|
||||
request (QueryRequest): The request object containing the query parameters.
|
||||
optional_api_key (Optional[str], optional): An optional API key for authentication. Defaults to None.
|
||||
|
||||
Returns:
|
||||
StreamingResponse: A streaming response containing the RAG query results.
|
||||
"""
|
||||
try:
|
||||
param = request.to_query_params(True)
|
||||
if param.top_k is None:
|
||||
param.top_k = top_k
|
||||
response = await rag.aquery(request.query, param=param)
|
||||
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
async def stream_generator():
|
||||
if isinstance(response, str):
|
||||
# If it's a string, send it all at once
|
||||
yield f"{json.dumps({'response': response})}\n"
|
||||
else:
|
||||
# If it's an async generator, send chunks one by one
|
||||
try:
|
||||
async for chunk in response:
|
||||
if chunk: # Only send non-empty content
|
||||
yield f"{json.dumps({'response': chunk})}\n"
|
||||
except Exception as e:
|
||||
logging.error(f"Streaming error: {str(e)}")
|
||||
yield f"{json.dumps({'error': str(e)})}\n"
|
||||
|
||||
return StreamingResponse(
|
||||
stream_generator(),
|
||||
media_type="application/x-ndjson",
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"Content-Type": "application/x-ndjson",
|
||||
"X-Accel-Buffering": "no", # Ensure proper handling of streaming response when proxied by Nginx
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
trace_exception(e)
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
return router
|
44
lightrag/api/utils_api.py
Normal file
44
lightrag/api/utils_api.py
Normal file
@@ -0,0 +1,44 @@
|
||||
"""
|
||||
Utility functions for the LightRAG API.
|
||||
"""
|
||||
|
||||
from typing import Optional
|
||||
from fastapi import HTTPException, Security
|
||||
from fastapi.security import APIKeyHeader
|
||||
from starlette.status import HTTP_403_FORBIDDEN
|
||||
|
||||
def get_api_key_dependency(api_key: Optional[str]):
|
||||
"""
|
||||
Create an API key dependency for route protection.
|
||||
|
||||
Args:
|
||||
api_key (Optional[str]): The API key to validate against.
|
||||
If None, no authentication is required.
|
||||
|
||||
Returns:
|
||||
Callable: A dependency function that validates the API key.
|
||||
"""
|
||||
if not api_key:
|
||||
# If no API key is configured, return a dummy dependency that always succeeds
|
||||
async def no_auth():
|
||||
return None
|
||||
|
||||
return no_auth
|
||||
|
||||
# If API key is configured, use proper authentication
|
||||
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
|
||||
|
||||
async def api_key_auth(
|
||||
api_key_header_value: Optional[str] = Security(api_key_header),
|
||||
):
|
||||
if not api_key_header_value:
|
||||
raise HTTPException(
|
||||
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
|
||||
)
|
||||
if api_key_header_value != api_key:
|
||||
raise HTTPException(
|
||||
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
|
||||
)
|
||||
return api_key_header_value
|
||||
|
||||
return api_key_auth
|
Reference in New Issue
Block a user