Settign LLM cache option for entity extraction from env
This commit is contained in:
@@ -50,6 +50,7 @@
|
|||||||
# MAX_TOKEN_SUMMARY=500 # Max tokens for entity or relations summary
|
# MAX_TOKEN_SUMMARY=500 # Max tokens for entity or relations summary
|
||||||
# SUMMARY_LANGUAGE=English
|
# SUMMARY_LANGUAGE=English
|
||||||
# MAX_EMBED_TOKENS=8192
|
# MAX_EMBED_TOKENS=8192
|
||||||
|
# ENABLE_LLM_CACHE_FOR_EXTRACT=false # Enable LLM cache for entity extraction, defaults to false
|
||||||
|
|
||||||
### LLM Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
|
### LLM Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
|
||||||
LLM_BINDING=ollama
|
LLM_BINDING=ollama
|
||||||
|
@@ -223,6 +223,9 @@ LightRAG supports binding to various LLM/Embedding backends:
|
|||||||
|
|
||||||
Use environment variables `LLM_BINDING` or CLI argument `--llm-binding` to select LLM backend type. Use environment variables `EMBEDDING_BINDING` or CLI argument `--embedding-binding` to select LLM backend type.
|
Use environment variables `LLM_BINDING` or CLI argument `--llm-binding` to select LLM backend type. Use environment variables `EMBEDDING_BINDING` or CLI argument `--embedding-binding` to select LLM backend type.
|
||||||
|
|
||||||
|
### Entity Extraction Configuration
|
||||||
|
- ENABLE_LLM_CACHE_FOR_EXTRACT: Enable LLM cache for entity extraction (default: false)
|
||||||
|
|
||||||
### Storage Types Supported
|
### Storage Types Supported
|
||||||
|
|
||||||
LightRAG uses 4 types of storage for difference purposes:
|
LightRAG uses 4 types of storage for difference purposes:
|
||||||
|
@@ -50,6 +50,9 @@ from .auth import auth_handler
|
|||||||
# This update allows the user to put a different.env file for each lightrag folder
|
# This update allows the user to put a different.env file for each lightrag folder
|
||||||
load_dotenv(".env", override=True)
|
load_dotenv(".env", override=True)
|
||||||
|
|
||||||
|
# Read entity extraction cache config
|
||||||
|
enable_llm_cache = os.getenv("ENABLE_LLM_CACHE_FOR_EXTRACT", "false").lower() == "true"
|
||||||
|
|
||||||
# Initialize config parser
|
# Initialize config parser
|
||||||
config = configparser.ConfigParser()
|
config = configparser.ConfigParser()
|
||||||
config.read("config.ini")
|
config.read("config.ini")
|
||||||
@@ -323,7 +326,7 @@ def create_app(args):
|
|||||||
vector_db_storage_cls_kwargs={
|
vector_db_storage_cls_kwargs={
|
||||||
"cosine_better_than_threshold": args.cosine_threshold
|
"cosine_better_than_threshold": args.cosine_threshold
|
||||||
},
|
},
|
||||||
enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee
|
enable_llm_cache_for_entity_extract=enable_llm_cache, # Read from environment variable
|
||||||
embedding_cache_config={
|
embedding_cache_config={
|
||||||
"enabled": True,
|
"enabled": True,
|
||||||
"similarity_threshold": 0.95,
|
"similarity_threshold": 0.95,
|
||||||
@@ -352,7 +355,7 @@ def create_app(args):
|
|||||||
vector_db_storage_cls_kwargs={
|
vector_db_storage_cls_kwargs={
|
||||||
"cosine_better_than_threshold": args.cosine_threshold
|
"cosine_better_than_threshold": args.cosine_threshold
|
||||||
},
|
},
|
||||||
enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee
|
enable_llm_cache_for_entity_extract=enable_llm_cache, # Read from environment variable
|
||||||
embedding_cache_config={
|
embedding_cache_config={
|
||||||
"enabled": True,
|
"enabled": True,
|
||||||
"similarity_threshold": 0.95,
|
"similarity_threshold": 0.95,
|
||||||
|
Reference in New Issue
Block a user