Update README.md
This commit is contained in:
62
README.md
62
README.md
@@ -22,6 +22,7 @@ This repository hosts the code of LightRAG. The structure of this code is based
|
|||||||
</div>
|
</div>
|
||||||
|
|
||||||
## 🎉 News
|
## 🎉 News
|
||||||
|
- [x] [2024.11.04]🎯📢You can [use Neo4J for Storage](https://github.com/HKUDS/LightRAG/edit/main/README.md#using-neo4j-for-storage) now.
|
||||||
- [x] [2024.10.29]🎯📢LightRAG now supports multiple file types, including PDF, DOC, PPT, and CSV via `textract`.
|
- [x] [2024.10.29]🎯📢LightRAG now supports multiple file types, including PDF, DOC, PPT, and CSV via `textract`.
|
||||||
- [x] [2024.10.20]🎯📢We’ve added a new feature to LightRAG: Graph Visualization.
|
- [x] [2024.10.20]🎯📢We’ve added a new feature to LightRAG: Graph Visualization.
|
||||||
- [x] [2024.10.18]🎯📢We’ve added a link to a [LightRAG Introduction Video](https://youtu.be/oageL-1I0GE). Thanks to the author!
|
- [x] [2024.10.18]🎯📢We’ve added a link to a [LightRAG Introduction Video](https://youtu.be/oageL-1I0GE). Thanks to the author!
|
||||||
@@ -161,39 +162,6 @@ rag = LightRAG(
|
|||||||
```
|
```
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
|
||||||
<details>
|
|
||||||
<summary> Using Neo4J for Storage </summary>
|
|
||||||
|
|
||||||
* For production level scenarios you will most likely want to leverage an enterprise solution
|
|
||||||
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
|
|
||||||
* See: https://hub.docker.com/_/neo4j
|
|
||||||
|
|
||||||
|
|
||||||
```python
|
|
||||||
export NEO4J_URI="neo4j://localhost:7687"
|
|
||||||
export NEO4J_USERNAME="neo4j"
|
|
||||||
export NEO4J_PASSWORD="password"
|
|
||||||
|
|
||||||
When you launch the project be sure to override the default KG: NetworkS
|
|
||||||
by specifying kg="Neo4JStorage".
|
|
||||||
|
|
||||||
# Note: Default settings use NetworkX
|
|
||||||
#Initialize LightRAG with Neo4J implementation.
|
|
||||||
WORKING_DIR = "./local_neo4jWorkDir"
|
|
||||||
|
|
||||||
rag = LightRAG(
|
|
||||||
working_dir=WORKING_DIR,
|
|
||||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
|
||||||
kg="Neo4JStorage", #<-----------override KG default
|
|
||||||
log_level="DEBUG" #<-----------override log_level default
|
|
||||||
)
|
|
||||||
```
|
|
||||||
see test_neo4j.py for a working example.
|
|
||||||
</details>
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary> Using Ollama Models </summary>
|
<summary> Using Ollama Models </summary>
|
||||||
|
|
||||||
@@ -222,6 +190,34 @@ rag = LightRAG(
|
|||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Using Neo4J for Storage
|
||||||
|
|
||||||
|
* For production level scenarios you will most likely want to leverage an enterprise solution
|
||||||
|
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
|
||||||
|
* See: https://hub.docker.com/_/neo4j
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
export NEO4J_URI="neo4j://localhost:7687"
|
||||||
|
export NEO4J_USERNAME="neo4j"
|
||||||
|
export NEO4J_PASSWORD="password"
|
||||||
|
|
||||||
|
When you launch the project be sure to override the default KG: NetworkS
|
||||||
|
by specifying kg="Neo4JStorage".
|
||||||
|
|
||||||
|
# Note: Default settings use NetworkX
|
||||||
|
#Initialize LightRAG with Neo4J implementation.
|
||||||
|
WORKING_DIR = "./local_neo4jWorkDir"
|
||||||
|
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||||
|
kg="Neo4JStorage", #<-----------override KG default
|
||||||
|
log_level="DEBUG" #<-----------override log_level default
|
||||||
|
)
|
||||||
|
```
|
||||||
|
see test_neo4j.py for a working example.
|
||||||
|
|
||||||
### Increasing context size
|
### Increasing context size
|
||||||
In order for LightRAG to work context should be at least 32k tokens. By default Ollama models have context size of 8k. You can achieve this using one of two ways:
|
In order for LightRAG to work context should be at least 32k tokens. By default Ollama models have context size of 8k. You can achieve this using one of two ways:
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user