cleaning code for pull

This commit is contained in:
Ken Wiltshire
2024-11-01 16:11:19 -04:00
parent caa24ee443
commit ca65e360aa
14 changed files with 39 additions and 28678 deletions

View File

@@ -1,27 +1,3 @@
print ("init package vars here. ......")
# from .neo4j import GraphStorage as Neo4JStorage
# print ("init package vars here. ......")
# import sys
# import importlib
# # Specify the path to the directory containing the module
# # Add the directory to the system path
# module_dir = '/Users/kenwiltshire/documents/dev/LightRag/lightrag/kg'
# sys.path.append(module_dir)
# # Specify the module name
# module_name = 'neo4j'
# # Import the module
# spec = importlib.util.spec_from_file_location(module_name, f'{module_dir}/{module_name}.py')
# Neo4JStorage = importlib.util.module_from_spec(spec)
# spec.loader.exec_module(Neo4JStorage)
# Relative imports are still possible by adding a leading period to the module name when using the from ... import form:
# # Import names from pkg.string
# from .string import name1, name2
# # Import pkg.string
# from . import string

View File

@@ -120,9 +120,6 @@ class LightRAG:
addon_params: dict = field(default_factory=dict)
convert_response_to_json_func: callable = convert_response_to_json
# def get_configured_KG(self):
# return self.kg
def __post_init__(self):
log_file = os.path.join(self.working_dir, "lightrag.log")
set_logger(log_file)
@@ -133,7 +130,7 @@ class LightRAG:
_print_config = ",\n ".join([f"{k} = {v}" for k, v in asdict(self).items()])
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
#should move all storage setup here to leverage initial start params attached to self.
#@TODO: should move all storage setup here to leverage initial start params attached to self.
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class()[self.kg]
if not os.path.exists(self.working_dir):

View File

@@ -72,9 +72,7 @@ async def openai_complete_if_cache(
@retry(
stop=stop_after_attempt(3),
#kw_
wait=wait_exponential(multiplier=1, min=10, max=60),
# wait=wait_exponential(multiplier=1, min=4, max=10),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def azure_openai_complete_if_cache(model,

View File

@@ -908,7 +908,6 @@ async def hybrid_query(
.strip()
)
result = "{" + result.split("{")[1].split("}")[0] + "}"
keywords_data = json.loads(result)
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])

View File

@@ -95,7 +95,6 @@ class NanoVectorDBStorage(BaseVectorStorage):
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
print (f"Upserting to vector: {list_data}")
results = self._client.upsert(datas=list_data)
return results
@@ -110,7 +109,6 @@ class NanoVectorDBStorage(BaseVectorStorage):
results = [
{**dp, "id": dp["__id__"], "distance": dp["__metrics__"]} for dp in results
]
print (f"vector db results {results} for query {query}")
return results
async def index_done_callback(self):
@@ -235,9 +233,11 @@ class NetworkXStorage(BaseGraphStorage):
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
return await self._node_embed_algorithms[algorithm]()
#@TODO: NOT USED
async def _node2vec_embed(self):
from graspologic import embed
print ("is this ever called?")
embeddings, nodes = embed.node2vec_embed(
self._graph,
**self.global_config["node2vec_params"],