feat: Add ChromaDB integration for vector storage
- Implemented `ChromaVectorDBStorage` class in `lightrag/kg/chroma_impl.py` to support ChromaDB as a vector storage backend.
- Updated `lightrag.py` to include `ChromaVectorDBStorage` in the storage class mapping.
- Added a test script `test_chromadb.py` to demonstrate the usage of ChromaDB with LightRAG, including configuration for embedding functions and ChromaDB connection settings.
- fix lazy import function to support package context for dynamic class loading.
288d4b8355
This commit is contained in:
113
test_chromadb.py
Normal file
113
test_chromadb.py
Normal file
@@ -0,0 +1,113 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, openai_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
#########
|
||||
WORKING_DIR = "./chromadb_test_dir"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
# ChromaDB Configuration
|
||||
CHROMADB_HOST = os.environ.get("CHROMADB_HOST", "localhost")
|
||||
CHROMADB_PORT = int(os.environ.get("CHROMADB_PORT", 8000))
|
||||
CHROMADB_AUTH_TOKEN = os.environ.get("CHROMADB_AUTH_TOKEN", "secret-token")
|
||||
CHROMADB_AUTH_PROVIDER = os.environ.get(
|
||||
"CHROMADB_AUTH_PROVIDER", "chromadb.auth.token_authn.TokenAuthClientProvider"
|
||||
)
|
||||
CHROMADB_AUTH_HEADER = os.environ.get("CHROMADB_AUTH_HEADER", "X-Chroma-Token")
|
||||
|
||||
# Embedding Configuration and Functions
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
|
||||
# ChromaDB requires knowing the dimension of embeddings upfront when
|
||||
# creating a collection. The embedding dimension is model-specific
|
||||
# (e.g. text-embedding-3-large uses 3072 dimensions)
|
||||
# we dynamically determine it by running a test embedding
|
||||
# and then pass it to the ChromaDBStorage class
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
)
|
||||
|
||||
|
||||
async def get_embedding_dimension():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
return embedding.shape[1]
|
||||
|
||||
|
||||
async def create_embedding_function_instance():
|
||||
# Get embedding dimension
|
||||
embedding_dimension = await get_embedding_dimension()
|
||||
# Create embedding function instance
|
||||
return EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
)
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
embedding_func_instance = await create_embedding_function_instance()
|
||||
|
||||
return LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
embedding_func=embedding_func_instance,
|
||||
vector_storage="ChromaVectorDBStorage",
|
||||
log_level="DEBUG",
|
||||
embedding_batch_num=32,
|
||||
vector_db_storage_cls_kwargs={
|
||||
"host": CHROMADB_HOST,
|
||||
"port": CHROMADB_PORT,
|
||||
"auth_token": CHROMADB_AUTH_TOKEN,
|
||||
"auth_provider": CHROMADB_AUTH_PROVIDER,
|
||||
"auth_header_name": CHROMADB_AUTH_HEADER,
|
||||
"collection_settings": {
|
||||
"hnsw:space": "cosine",
|
||||
"hnsw:construction_ef": 128,
|
||||
"hnsw:search_ef": 128,
|
||||
"hnsw:M": 16,
|
||||
"hnsw:batch_size": 100,
|
||||
"hnsw:sync_threshold": 1000,
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
# Run the initialization
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
||||
# rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
Reference in New Issue
Block a user