fix bug
This commit is contained in:
@@ -3,6 +3,7 @@ import sys
|
|||||||
|
|
||||||
from lightrag import LightRAG, QueryParam
|
from lightrag import LightRAG, QueryParam
|
||||||
from lightrag.llm import hf_model_complete, hf_embedding
|
from lightrag.llm import hf_model_complete, hf_embedding
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
from transformers import AutoModel,AutoTokenizer
|
from transformers import AutoModel,AutoTokenizer
|
||||||
|
|
||||||
WORKING_DIR = "./dickens"
|
WORKING_DIR = "./dickens"
|
||||||
@@ -14,9 +15,13 @@ rag = LightRAG(
|
|||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=hf_model_complete,
|
llm_model_func=hf_model_complete,
|
||||||
llm_model_name='meta-llama/Llama-3.1-8B-Instruct',
|
llm_model_name='meta-llama/Llama-3.1-8B-Instruct',
|
||||||
embedding_func=hf_embedding,
|
embedding_func=EmbeddingFunc(
|
||||||
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
||||||
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
||||||
|
embedding_dim=384,
|
||||||
|
max_token_size=5000,
|
||||||
|
func=hf_embedding
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@@ -5,15 +5,15 @@ from lightrag import LightRAG, QueryParam
|
|||||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||||
from transformers import AutoModel,AutoTokenizer
|
from transformers import AutoModel,AutoTokenizer
|
||||||
|
|
||||||
WORKING_DIR = "./dickens"
|
WORKING_DIR = "/home/zrguo/code/myrag/agriculture"
|
||||||
|
|
||||||
if not os.path.exists(WORKING_DIR):
|
if not os.path.exists(WORKING_DIR):
|
||||||
os.mkdir(WORKING_DIR)
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=gpt_4o_complete
|
llm_model_func=gpt_4o_mini_complete
|
||||||
# llm_model_func=gpt_4o_mini_complete
|
# llm_model_func=gpt_4o_complete
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@@ -76,12 +76,8 @@ class LightRAG:
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
# text embedding
|
|
||||||
tokenizer: Any = None
|
|
||||||
embed_model: Any = None
|
|
||||||
|
|
||||||
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
||||||
embedding_func: EmbeddingFunc = field(default_factory=lambda:openai_embedding)#
|
embedding_func: EmbeddingFunc = field(default_factory=lambda:openai_embedding)
|
||||||
embedding_batch_num: int = 32
|
embedding_batch_num: int = 32
|
||||||
embedding_func_max_async: int = 16
|
embedding_func_max_async: int = 16
|
||||||
|
|
||||||
@@ -103,13 +99,6 @@ class LightRAG:
|
|||||||
convert_response_to_json_func: callable = convert_response_to_json
|
convert_response_to_json_func: callable = convert_response_to_json
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
if callable(self.embedding_func) and self.embedding_func.__name__ == 'hf_embedding':
|
|
||||||
if self.tokenizer is None:
|
|
||||||
self.tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
|
||||||
if self.embed_model is None:
|
|
||||||
self.embed_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
|
||||||
|
|
||||||
|
|
||||||
log_file = os.path.join(self.working_dir, "lightrag.log")
|
log_file = os.path.join(self.working_dir, "lightrag.log")
|
||||||
set_logger(log_file)
|
set_logger(log_file)
|
||||||
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
||||||
@@ -139,10 +128,9 @@ class LightRAG:
|
|||||||
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
||||||
namespace="chunk_entity_relation", global_config=asdict(self)
|
namespace="chunk_entity_relation", global_config=asdict(self)
|
||||||
)
|
)
|
||||||
|
|
||||||
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
||||||
lambda texts: self.embedding_func(texts, self.tokenizer, self.embed_model)
|
self.embedding_func
|
||||||
if callable(self.embedding_func) and self.embedding_func.__name__ == 'hf_embedding'
|
|
||||||
else self.embedding_func(texts)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
self.entities_vdb = (
|
self.entities_vdb = (
|
||||||
|
Reference in New Issue
Block a user