Fix concurrent problem on extract_entities function.

- Abandon the approach of temporarily replacing the global llm_model_func configuration
- Introduce custom_llm function with new_config for handle_cache while extracting entities
- Update handle_cache to accept custom_llm
This commit is contained in:
yangdx
2025-01-30 02:45:33 +08:00
parent 06647438b2
commit cc50ade14e
2 changed files with 24 additions and 8 deletions

View File

@@ -491,7 +491,7 @@ def dequantize_embedding(
return (quantized * scale + min_val).astype(np.float32)
async def handle_cache(hashing_kv, args_hash, prompt, mode="default", cache_type=None):
async def handle_cache(hashing_kv, args_hash, prompt, mode="default", cache_type=None, llm=None):
"""Generic cache handling function"""
if hashing_kv is None or not hashing_kv.global_config.get("enable_llm_cache"):
return None, None, None, None
@@ -528,7 +528,7 @@ async def handle_cache(hashing_kv, args_hash, prompt, mode="default", cache_type
similarity_threshold=embedding_cache_config["similarity_threshold"],
mode=mode,
use_llm_check=use_llm_check,
llm_func=llm_model_func if use_llm_check else None,
llm_func=llm if (use_llm_check and llm is not None) else (llm_model_func if use_llm_check else None),
original_prompt=prompt if use_llm_check else None,
cache_type=cache_type,
)