Remove api demo (reference to LightRAG Server instead)
This commit is contained in:
@@ -1,188 +0,0 @@
|
|||||||
from fastapi import FastAPI, HTTPException, File, UploadFile
|
|
||||||
from contextlib import asynccontextmanager
|
|
||||||
from pydantic import BaseModel
|
|
||||||
import os
|
|
||||||
from lightrag import LightRAG, QueryParam
|
|
||||||
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
|
||||||
from lightrag.utils import EmbeddingFunc
|
|
||||||
from typing import Optional
|
|
||||||
import asyncio
|
|
||||||
import nest_asyncio
|
|
||||||
import aiofiles
|
|
||||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
||||||
|
|
||||||
# Apply nest_asyncio to solve event loop issues
|
|
||||||
nest_asyncio.apply()
|
|
||||||
|
|
||||||
DEFAULT_RAG_DIR = "index_default"
|
|
||||||
|
|
||||||
DEFAULT_INPUT_FILE = "book.txt"
|
|
||||||
INPUT_FILE = os.environ.get("INPUT_FILE", f"{DEFAULT_INPUT_FILE}")
|
|
||||||
print(f"INPUT_FILE: {INPUT_FILE}")
|
|
||||||
|
|
||||||
# Configure working directory
|
|
||||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
|
||||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
|
||||||
|
|
||||||
|
|
||||||
if not os.path.exists(WORKING_DIR):
|
|
||||||
os.mkdir(WORKING_DIR)
|
|
||||||
|
|
||||||
|
|
||||||
async def init():
|
|
||||||
rag = LightRAG(
|
|
||||||
working_dir=WORKING_DIR,
|
|
||||||
llm_model_func=ollama_model_complete,
|
|
||||||
llm_model_name="gemma2:9b",
|
|
||||||
llm_model_max_async=4,
|
|
||||||
llm_model_max_token_size=8192,
|
|
||||||
llm_model_kwargs={
|
|
||||||
"host": "http://localhost:11434",
|
|
||||||
"options": {"num_ctx": 8192},
|
|
||||||
},
|
|
||||||
embedding_func=EmbeddingFunc(
|
|
||||||
embedding_dim=768,
|
|
||||||
max_token_size=8192,
|
|
||||||
func=lambda texts: ollama_embed(
|
|
||||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
|
||||||
),
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add initialization code
|
|
||||||
await rag.initialize_storages()
|
|
||||||
await initialize_pipeline_status()
|
|
||||||
|
|
||||||
return rag
|
|
||||||
|
|
||||||
|
|
||||||
@asynccontextmanager
|
|
||||||
async def lifespan(app: FastAPI):
|
|
||||||
global rag
|
|
||||||
rag = await init()
|
|
||||||
print("done!")
|
|
||||||
yield
|
|
||||||
|
|
||||||
|
|
||||||
app = FastAPI(
|
|
||||||
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
# Data models
|
|
||||||
class QueryRequest(BaseModel):
|
|
||||||
query: str
|
|
||||||
mode: str = "hybrid"
|
|
||||||
only_need_context: bool = False
|
|
||||||
|
|
||||||
|
|
||||||
class InsertRequest(BaseModel):
|
|
||||||
text: str
|
|
||||||
|
|
||||||
|
|
||||||
class Response(BaseModel):
|
|
||||||
status: str
|
|
||||||
data: Optional[str] = None
|
|
||||||
message: Optional[str] = None
|
|
||||||
|
|
||||||
|
|
||||||
# API routes
|
|
||||||
@app.post("/query", response_model=Response)
|
|
||||||
async def query_endpoint(request: QueryRequest):
|
|
||||||
try:
|
|
||||||
loop = asyncio.get_event_loop()
|
|
||||||
result = await loop.run_in_executor(
|
|
||||||
None,
|
|
||||||
lambda: rag.query(
|
|
||||||
request.query,
|
|
||||||
param=QueryParam(
|
|
||||||
mode=request.mode, only_need_context=request.only_need_context
|
|
||||||
),
|
|
||||||
),
|
|
||||||
)
|
|
||||||
return Response(status="success", data=result)
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
# insert by text
|
|
||||||
@app.post("/insert", response_model=Response)
|
|
||||||
async def insert_endpoint(request: InsertRequest):
|
|
||||||
try:
|
|
||||||
loop = asyncio.get_event_loop()
|
|
||||||
await loop.run_in_executor(None, lambda: rag.insert(request.text))
|
|
||||||
return Response(status="success", message="Text inserted successfully")
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
# insert by file in payload
|
|
||||||
@app.post("/insert_file", response_model=Response)
|
|
||||||
async def insert_file(file: UploadFile = File(...)):
|
|
||||||
try:
|
|
||||||
file_content = await file.read()
|
|
||||||
# Read file content
|
|
||||||
try:
|
|
||||||
content = file_content.decode("utf-8")
|
|
||||||
except UnicodeDecodeError:
|
|
||||||
# If UTF-8 decoding fails, try other encodings
|
|
||||||
content = file_content.decode("gbk")
|
|
||||||
# Insert file content
|
|
||||||
loop = asyncio.get_event_loop()
|
|
||||||
await loop.run_in_executor(None, lambda: rag.insert(content))
|
|
||||||
|
|
||||||
return Response(
|
|
||||||
status="success",
|
|
||||||
message=f"File content from {file.filename} inserted successfully",
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
# insert by local default file
|
|
||||||
@app.post("/insert_default_file", response_model=Response)
|
|
||||||
@app.get("/insert_default_file", response_model=Response)
|
|
||||||
async def insert_default_file():
|
|
||||||
try:
|
|
||||||
# Read file content from book.txt
|
|
||||||
async with aiofiles.open(INPUT_FILE, "r", encoding="utf-8") as file:
|
|
||||||
content = await file.read()
|
|
||||||
print(f"read input file {INPUT_FILE} successfully")
|
|
||||||
# Insert file content
|
|
||||||
loop = asyncio.get_event_loop()
|
|
||||||
await loop.run_in_executor(None, lambda: rag.insert(content))
|
|
||||||
|
|
||||||
return Response(
|
|
||||||
status="success",
|
|
||||||
message=f"File content from {INPUT_FILE} inserted successfully",
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
@app.get("/health")
|
|
||||||
async def health_check():
|
|
||||||
return {"status": "healthy"}
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import uvicorn
|
|
||||||
|
|
||||||
uvicorn.run(app, host="0.0.0.0", port=8020)
|
|
||||||
|
|
||||||
# Usage example
|
|
||||||
# To run the server, use the following command in your terminal:
|
|
||||||
# python lightrag_api_openai_compatible_demo.py
|
|
||||||
|
|
||||||
# Example requests:
|
|
||||||
# 1. Query:
|
|
||||||
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
|
|
||||||
|
|
||||||
# 2. Insert text:
|
|
||||||
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
|
|
||||||
|
|
||||||
# 3. Insert file:
|
|
||||||
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: multipart/form-data" -F "file=@path/to/your/file.txt"
|
|
||||||
|
|
||||||
# 4. Health check:
|
|
||||||
# curl -X GET "http://127.0.0.1:8020/health"
|
|
@@ -1,204 +0,0 @@
|
|||||||
from fastapi import FastAPI, HTTPException, File, UploadFile
|
|
||||||
from contextlib import asynccontextmanager
|
|
||||||
from pydantic import BaseModel
|
|
||||||
import os
|
|
||||||
from lightrag import LightRAG, QueryParam
|
|
||||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
|
||||||
from lightrag.utils import EmbeddingFunc
|
|
||||||
import numpy as np
|
|
||||||
from typing import Optional
|
|
||||||
import asyncio
|
|
||||||
import nest_asyncio
|
|
||||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
||||||
|
|
||||||
# Apply nest_asyncio to solve event loop issues
|
|
||||||
nest_asyncio.apply()
|
|
||||||
|
|
||||||
DEFAULT_RAG_DIR = "index_default"
|
|
||||||
app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
|
||||||
|
|
||||||
# Configure working directory
|
|
||||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
|
||||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
|
||||||
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
|
|
||||||
print(f"LLM_MODEL: {LLM_MODEL}")
|
|
||||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
|
||||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
|
||||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
|
||||||
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
|
||||||
BASE_URL = os.environ.get("BASE_URL", "https://api.openai.com/v1")
|
|
||||||
print(f"BASE_URL: {BASE_URL}")
|
|
||||||
API_KEY = os.environ.get("API_KEY", "xxxxxxxx")
|
|
||||||
print(f"API_KEY: {API_KEY}")
|
|
||||||
|
|
||||||
if not os.path.exists(WORKING_DIR):
|
|
||||||
os.mkdir(WORKING_DIR)
|
|
||||||
|
|
||||||
|
|
||||||
# LLM model function
|
|
||||||
|
|
||||||
|
|
||||||
async def llm_model_func(
|
|
||||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
|
||||||
) -> str:
|
|
||||||
return await openai_complete_if_cache(
|
|
||||||
model=LLM_MODEL,
|
|
||||||
prompt=prompt,
|
|
||||||
system_prompt=system_prompt,
|
|
||||||
history_messages=history_messages,
|
|
||||||
base_url=BASE_URL,
|
|
||||||
api_key=API_KEY,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
# Embedding function
|
|
||||||
|
|
||||||
|
|
||||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
||||||
return await openai_embed(
|
|
||||||
texts=texts,
|
|
||||||
model=EMBEDDING_MODEL,
|
|
||||||
base_url=BASE_URL,
|
|
||||||
api_key=API_KEY,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
async def get_embedding_dim():
|
|
||||||
test_text = ["This is a test sentence."]
|
|
||||||
embedding = await embedding_func(test_text)
|
|
||||||
embedding_dim = embedding.shape[1]
|
|
||||||
print(f"{embedding_dim=}")
|
|
||||||
return embedding_dim
|
|
||||||
|
|
||||||
|
|
||||||
# Initialize RAG instance
|
|
||||||
async def init():
|
|
||||||
embedding_dimension = await get_embedding_dim()
|
|
||||||
|
|
||||||
rag = LightRAG(
|
|
||||||
working_dir=WORKING_DIR,
|
|
||||||
llm_model_func=llm_model_func,
|
|
||||||
embedding_func=EmbeddingFunc(
|
|
||||||
embedding_dim=embedding_dimension,
|
|
||||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
|
||||||
func=embedding_func,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
await rag.initialize_storages()
|
|
||||||
await initialize_pipeline_status()
|
|
||||||
|
|
||||||
return rag
|
|
||||||
|
|
||||||
|
|
||||||
@asynccontextmanager
|
|
||||||
async def lifespan(app: FastAPI):
|
|
||||||
global rag
|
|
||||||
rag = await init()
|
|
||||||
print("done!")
|
|
||||||
yield
|
|
||||||
|
|
||||||
|
|
||||||
app = FastAPI(
|
|
||||||
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
|
||||||
)
|
|
||||||
|
|
||||||
# Data models
|
|
||||||
|
|
||||||
|
|
||||||
class QueryRequest(BaseModel):
|
|
||||||
query: str
|
|
||||||
mode: str = "hybrid"
|
|
||||||
only_need_context: bool = False
|
|
||||||
|
|
||||||
|
|
||||||
class InsertRequest(BaseModel):
|
|
||||||
text: str
|
|
||||||
|
|
||||||
|
|
||||||
class Response(BaseModel):
|
|
||||||
status: str
|
|
||||||
data: Optional[str] = None
|
|
||||||
message: Optional[str] = None
|
|
||||||
|
|
||||||
|
|
||||||
# API routes
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/query", response_model=Response)
|
|
||||||
async def query_endpoint(request: QueryRequest):
|
|
||||||
try:
|
|
||||||
loop = asyncio.get_event_loop()
|
|
||||||
result = await loop.run_in_executor(
|
|
||||||
None,
|
|
||||||
lambda: rag.query(
|
|
||||||
request.query,
|
|
||||||
param=QueryParam(
|
|
||||||
mode=request.mode, only_need_context=request.only_need_context
|
|
||||||
),
|
|
||||||
),
|
|
||||||
)
|
|
||||||
return Response(status="success", data=result)
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/insert", response_model=Response)
|
|
||||||
async def insert_endpoint(request: InsertRequest):
|
|
||||||
try:
|
|
||||||
loop = asyncio.get_event_loop()
|
|
||||||
await loop.run_in_executor(None, lambda: rag.insert(request.text))
|
|
||||||
return Response(status="success", message="Text inserted successfully")
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/insert_file", response_model=Response)
|
|
||||||
async def insert_file(file: UploadFile = File(...)):
|
|
||||||
try:
|
|
||||||
file_content = await file.read()
|
|
||||||
# Read file content
|
|
||||||
try:
|
|
||||||
content = file_content.decode("utf-8")
|
|
||||||
except UnicodeDecodeError:
|
|
||||||
# If UTF-8 decoding fails, try other encodings
|
|
||||||
content = file_content.decode("gbk")
|
|
||||||
# Insert file content
|
|
||||||
loop = asyncio.get_event_loop()
|
|
||||||
await loop.run_in_executor(None, lambda: rag.insert(content))
|
|
||||||
|
|
||||||
return Response(
|
|
||||||
status="success",
|
|
||||||
message=f"File content from {file.filename} inserted successfully",
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
@app.get("/health")
|
|
||||||
async def health_check():
|
|
||||||
return {"status": "healthy"}
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import uvicorn
|
|
||||||
|
|
||||||
uvicorn.run(app, host="0.0.0.0", port=8020)
|
|
||||||
|
|
||||||
# Usage example
|
|
||||||
# To run the server, use the following command in your terminal:
|
|
||||||
# python lightrag_api_openai_compatible_demo.py
|
|
||||||
|
|
||||||
# Example requests:
|
|
||||||
# 1. Query:
|
|
||||||
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
|
|
||||||
|
|
||||||
# 2. Insert text:
|
|
||||||
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
|
|
||||||
|
|
||||||
# 3. Insert file:
|
|
||||||
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: multipart/form-data" -F "file=@path/to/your/file.txt"
|
|
||||||
|
|
||||||
# 4. Health check:
|
|
||||||
# curl -X GET "http://127.0.0.1:8020/health"
|
|
Reference in New Issue
Block a user