From cf869fc6803c248bd201f4031027d031caabaf32 Mon Sep 17 00:00:00 2001 From: LarFii <834462287@qq.com> Date: Wed, 16 Oct 2024 17:45:49 +0800 Subject: [PATCH] update README.md --- README.md | 47 +++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 45 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 6dedff97..358115c0 100644 --- a/README.md +++ b/README.md @@ -20,8 +20,8 @@ This repository hosts the code of LightRAG. The structure of this code is based ## 🎉 News -- [x] [2024.10.16]🎯🎯📢📢LightRAG now supports Ollama models! -- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports Hugging Face models! +- [x] [2024.10.16]🎯🎯📢📢LightRAG now supports [Ollama models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-ollama-models)! +- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports [Hugging Face models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-hugging-face-models)! ## Install @@ -75,6 +75,42 @@ print(rag.query("What are the top themes in this story?", param=QueryParam(mode= # Perform hybrid search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))) ``` + +### Open AI-like APIs +LightRAG also support Open AI-like chat/embeddings APIs: +```python +async def llm_model_func( + prompt, system_prompt=None, history_messages=[], **kwargs +) -> str: + return await openai_complete_if_cache( + "solar-mini", + prompt, + system_prompt=system_prompt, + history_messages=history_messages, + api_key=os.getenv("UPSTAGE_API_KEY"), + base_url="https://api.upstage.ai/v1/solar", + **kwargs + ) + +async def embedding_func(texts: list[str]) -> np.ndarray: + return await openai_embedding( + texts, + model="solar-embedding-1-large-query", + api_key=os.getenv("UPSTAGE_API_KEY"), + base_url="https://api.upstage.ai/v1/solar" + ) + +rag = LightRAG( + working_dir=WORKING_DIR, + llm_model_func=llm_model_func, + embedding_func=EmbeddingFunc( + embedding_dim=4096, + max_token_size=8192, + func=embedding_func + ) +) +``` + ### Using Hugging Face Models If you want to use Hugging Face models, you only need to set LightRAG as follows: ```python @@ -98,6 +134,7 @@ rag = LightRAG( ), ) ``` + ### Using Ollama Models If you want to use Ollama models, you only need to set LightRAG as follows: ```python @@ -119,11 +156,13 @@ rag = LightRAG( ), ) ``` + ### Batch Insert ```python # Batch Insert: Insert multiple texts at once rag.insert(["TEXT1", "TEXT2",...]) ``` + ### Incremental Insert ```python @@ -207,6 +246,7 @@ Output your evaluation in the following JSON format: }} }} ``` + ### Overall Performance Table | | **Agriculture** | | **CS** | | **Legal** | | **Mix** | | |----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| @@ -233,6 +273,7 @@ Output your evaluation in the following JSON format: ## Reproduce All the code can be found in the `./reproduce` directory. + ### Step-0 Extract Unique Contexts First, we need to extract unique contexts in the datasets. ```python @@ -286,6 +327,7 @@ def extract_unique_contexts(input_directory, output_directory): print("All files have been processed.") ``` + ### Step-1 Insert Contexts For the extracted contexts, we insert them into the LightRAG system. @@ -307,6 +349,7 @@ def insert_text(rag, file_path): if retries == max_retries: print("Insertion failed after exceeding the maximum number of retries") ``` + ### Step-2 Generate Queries We extract tokens from both the first half and the second half of each context in the dataset, then combine them as the dataset description to generate queries.