Linting
This commit is contained in:
@@ -196,7 +196,7 @@ rag = LightRAG(
|
||||
### Using Neo4J for Storage
|
||||
|
||||
* For production level scenarios you will most likely want to leverage an enterprise solution
|
||||
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
|
||||
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
|
||||
* See: https://hub.docker.com/_/neo4j
|
||||
|
||||
|
||||
@@ -209,7 +209,7 @@ When you launch the project be sure to override the default KG: NetworkS
|
||||
by specifying kg="Neo4JStorage".
|
||||
|
||||
# Note: Default settings use NetworkX
|
||||
#Initialize LightRAG with Neo4J implementation.
|
||||
#Initialize LightRAG with Neo4J implementation.
|
||||
WORKING_DIR = "./local_neo4jWorkDir"
|
||||
|
||||
rag = LightRAG(
|
||||
@@ -503,8 +503,8 @@ pip install fastapi uvicorn pydantic
|
||||
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
||||
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
|
||||
export OPENAI_API_KEY="Your OpenAI API key" # Required
|
||||
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
||||
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
||||
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
||||
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
||||
```
|
||||
|
||||
3. Run the API server:
|
||||
@@ -923,4 +923,3 @@ primaryClass={cs.IR}
|
||||
}
|
||||
```
|
||||
**Thank you for your interest in our work!**
|
||||
|
||||
|
Reference in New Issue
Block a user