Linting
This commit is contained in:
@@ -923,4 +923,3 @@ primaryClass={cs.IR}
|
||||
}
|
||||
```
|
||||
**Thank you for your interest in our work!**
|
||||
|
||||
|
@@ -33,7 +33,7 @@ if not os.path.exists(WORKING_DIR):
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
LLM_MODEL,
|
||||
@@ -66,9 +66,11 @@ async def get_embedding_dim():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func),
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@@ -99,8 +101,13 @@ async def query_endpoint(request: QueryRequest):
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
result = await loop.run_in_executor(
|
||||
None, lambda: rag.query(request.query,
|
||||
param=QueryParam(mode=request.mode, only_need_context=request.only_need_context))
|
||||
None,
|
||||
lambda: rag.query(
|
||||
request.query,
|
||||
param=QueryParam(
|
||||
mode=request.mode, only_need_context=request.only_need_context
|
||||
),
|
||||
),
|
||||
)
|
||||
return Response(status="success", data=result)
|
||||
except Exception as e:
|
||||
|
@@ -1,5 +1,5 @@
|
||||
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
||||
|
||||
__version__ = "0.0.8"
|
||||
__version__ = "0.0.9"
|
||||
__author__ = "Zirui Guo"
|
||||
__url__ = "https://github.com/HKUDS/LightRAG"
|
||||
|
@@ -1,3 +1 @@
|
||||
# print ("init package vars here. ......")
|
||||
|
||||
|
||||
|
@@ -61,7 +61,6 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||
return loop
|
||||
|
||||
|
||||
|
||||
@dataclass
|
||||
class LightRAG:
|
||||
working_dir: str = field(
|
||||
|
@@ -607,8 +607,7 @@ async def _find_most_related_text_unit_from_entities(
|
||||
return []
|
||||
|
||||
all_text_units = sorted(
|
||||
all_text_units,
|
||||
key=lambda x: (x["order"], -x["relation_counts"])
|
||||
all_text_units, key=lambda x: (x["order"], -x["relation_counts"])
|
||||
)
|
||||
|
||||
all_text_units = truncate_list_by_token_size(
|
||||
|
2
test.py
2
test.py
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
|
||||
|
||||
#########
|
||||
|
Reference in New Issue
Block a user