Merge branch 'main' into yangdx

This commit is contained in:
yangdx
2025-01-16 20:20:09 +08:00
16 changed files with 1084 additions and 194 deletions

View File

@@ -1,5 +1,5 @@
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
__version__ = "1.1.1"
__version__ = "1.1.2"
__author__ = "Zirui Guo"
__url__ = "https://github.com/HKUDS/LightRAG"

View File

@@ -31,6 +31,8 @@ class QueryParam:
max_token_for_global_context: int = 4000
# Number of tokens for the entity descriptions
max_token_for_local_context: int = 4000
hl_keywords: list[str] = field(default_factory=list)
ll_keywords: list[str] = field(default_factory=list)
@dataclass

View File

@@ -153,8 +153,6 @@ class OracleDB:
if data is None:
await cursor.execute(sql)
else:
# print(data)
# print(sql)
await cursor.execute(sql, data)
await connection.commit()
except Exception as e:
@@ -167,35 +165,64 @@ class OracleDB:
@dataclass
class OracleKVStorage(BaseKVStorage):
# should pass db object to self.db
db: OracleDB = None
meta_fields = None
def __post_init__(self):
self._data = {}
self._max_batch_size = self.global_config["embedding_batch_num"]
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> Union[dict, None]:
"""根据 id 获取 doc_full 数据."""
"""get doc_full data based on id."""
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"workspace": self.db.workspace, "id": id}
# print("get_by_id:"+SQL)
res = await self.db.query(SQL, params)
if "llm_response_cache" == self.namespace:
array_res = await self.db.query(SQL, params, multirows=True)
res = {}
for row in array_res:
res[row["id"]] = row
else:
res = await self.db.query(SQL, params)
if res:
data = res # {"data":res}
# print (data)
return data
return res
else:
return None
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
"""Specifically for llm_response_cache."""
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
if "llm_response_cache" == self.namespace:
array_res = await self.db.query(SQL, params, multirows=True)
res = {}
for row in array_res:
res[row["id"]] = row
return res
else:
return None
# Query by id
async def get_by_ids(self, ids: list[str], fields=None) -> Union[list[dict], None]:
"""根据 id 获取 doc_chunks 数据"""
"""get doc_chunks data based on id"""
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
ids=",".join([f"'{id}'" for id in ids])
)
params = {"workspace": self.db.workspace}
# print("get_by_ids:"+SQL)
# print(params)
res = await self.db.query(SQL, params, multirows=True)
if "llm_response_cache" == self.namespace:
modes = set()
dict_res: dict[str, dict] = {}
for row in res:
modes.add(row["mode"])
for mode in modes:
if mode not in dict_res:
dict_res[mode] = {}
for row in res:
dict_res[row["mode"]][row["id"]] = row
res = [{k: v} for k, v in dict_res.items()]
if res:
data = res # [{"data":i} for i in res]
# print(data)
@@ -203,38 +230,43 @@ class OracleKVStorage(BaseKVStorage):
else:
return None
async def get_by_status_and_ids(
self, status: str, ids: list[str]
) -> Union[list[dict], None]:
"""Specifically for llm_response_cache."""
if ids is not None:
SQL = SQL_TEMPLATES["get_by_status_ids_" + self.namespace].format(
ids=",".join([f"'{id}'" for id in ids])
)
else:
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
params = {"workspace": self.db.workspace, "status": status}
res = await self.db.query(SQL, params, multirows=True)
if res:
return res
else:
return None
async def filter_keys(self, keys: list[str]) -> set[str]:
"""过滤掉重复内容"""
"""Return keys that don't exist in storage"""
SQL = SQL_TEMPLATES["filter_keys"].format(
table_name=N_T[self.namespace], ids=",".join([f"'{id}'" for id in keys])
)
params = {"workspace": self.db.workspace}
try:
await self.db.query(SQL, params)
except Exception as e:
logger.error(f"Oracle database error: {e}")
print(SQL)
print(params)
res = await self.db.query(SQL, params, multirows=True)
data = None
if res:
exist_keys = [key["id"] for key in res]
data = set([s for s in keys if s not in exist_keys])
return data
else:
exist_keys = []
data = set([s for s in keys if s not in exist_keys])
return data
return set(keys)
################ INSERT METHODS ################
async def upsert(self, data: dict[str, dict]):
left_data = {k: v for k, v in data.items() if k not in self._data}
self._data.update(left_data)
# print(self._data)
# values = []
if self.namespace == "text_chunks":
list_data = [
{
"__id__": k,
"id": k,
**{k1: v1 for k1, v1 in v.items()},
}
for k, v in data.items()
@@ -250,35 +282,50 @@ class OracleKVStorage(BaseKVStorage):
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
# print(list_data)
merge_sql = SQL_TEMPLATES["merge_chunk"]
for item in list_data:
merge_sql = SQL_TEMPLATES["merge_chunk"]
data = {
"check_id": item["__id__"],
"id": item["__id__"],
_data = {
"id": item["id"],
"content": item["content"],
"workspace": self.db.workspace,
"tokens": item["tokens"],
"chunk_order_index": item["chunk_order_index"],
"full_doc_id": item["full_doc_id"],
"content_vector": item["__vector__"],
"status": item["status"],
}
# print(merge_sql)
await self.db.execute(merge_sql, data)
await self.db.execute(merge_sql, _data)
if self.namespace == "full_docs":
for k, v in self._data.items():
for k, v in data.items():
# values.clear()
merge_sql = SQL_TEMPLATES["merge_doc_full"]
data = {
"check_id": k,
_data = {
"id": k,
"content": v["content"],
"workspace": self.db.workspace,
}
# print(merge_sql)
await self.db.execute(merge_sql, data)
return left_data
await self.db.execute(merge_sql, _data)
if self.namespace == "llm_response_cache":
for mode, items in data.items():
for k, v in items.items():
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
_data = {
"workspace": self.db.workspace,
"id": k,
"original_prompt": v["original_prompt"],
"return_value": v["return"],
"cache_mode": mode,
}
await self.db.execute(upsert_sql, _data)
return None
async def change_status(self, id: str, status: str):
SQL = SQL_TEMPLATES["change_status"].format(table_name=N_T[self.namespace])
params = {"workspace": self.db.workspace, "id": id, "status": status}
await self.db.execute(SQL, params)
async def index_done_callback(self):
if self.namespace in ["full_docs", "text_chunks"]:
@@ -287,6 +334,8 @@ class OracleKVStorage(BaseKVStorage):
@dataclass
class OracleVectorDBStorage(BaseVectorStorage):
# should pass db object to self.db
db: OracleDB = None
cosine_better_than_threshold: float = 0.2
def __post_init__(self):
@@ -328,7 +377,7 @@ class OracleGraphStorage(BaseGraphStorage):
def __post_init__(self):
"""从graphml文件加载图"""
self._max_batch_size = self.global_config["embedding_batch_num"]
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
#################### insert method ################
@@ -362,7 +411,6 @@ class OracleGraphStorage(BaseGraphStorage):
"content": content,
"content_vector": content_vector,
}
# print(merge_sql)
await self.db.execute(merge_sql, data)
# self._graph.add_node(node_id, **node_data)
@@ -564,20 +612,26 @@ N_T = {
TABLES = {
"LIGHTRAG_DOC_FULL": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
id varchar(256)PRIMARY KEY,
id varchar(256),
workspace varchar(1024),
doc_name varchar(1024),
content CLOB,
meta JSON,
content_summary varchar(1024),
content_length NUMBER,
status varchar(256),
chunks_count NUMBER,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
updatetime TIMESTAMP DEFAULT NULL,
error varchar(4096)
)"""
},
"LIGHTRAG_DOC_CHUNKS": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS (
id varchar(256) PRIMARY KEY,
id varchar(256),
workspace varchar(1024),
full_doc_id varchar(256),
status varchar(256),
chunk_order_index NUMBER,
tokens NUMBER,
content CLOB,
@@ -619,9 +673,15 @@ TABLES = {
"LIGHTRAG_LLM_CACHE": {
"ddl": """CREATE TABLE LIGHTRAG_LLM_CACHE (
id varchar(256) PRIMARY KEY,
send clob,
return clob,
model varchar(1024),
workspace varchar(1024),
cache_mode varchar(256),
model_name varchar(256),
original_prompt clob,
return_value clob,
embedding CLOB,
embedding_shape NUMBER,
embedding_min NUMBER,
embedding_max NUMBER,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""
@@ -646,23 +706,44 @@ TABLES = {
SQL_TEMPLATES = {
# SQL for KVStorage
"get_by_id_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace=:workspace and ID=:id",
"get_by_id_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID=:id",
"get_by_ids_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace=:workspace and ID in ({ids})",
"get_by_ids_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID in ({ids})",
"get_by_id_full_docs": "select ID,content,status from LIGHTRAG_DOC_FULL where workspace=:workspace and ID=:id",
"get_by_id_text_chunks": "select ID,TOKENS,content,CHUNK_ORDER_INDEX,FULL_DOC_ID,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID=:id",
"get_by_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id=:id""",
"get_by_mode_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND cache_mode=:cache_mode AND id=:id""",
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id IN ({ids})""",
"get_by_ids_full_docs": "select t.*,createtime as created_at from LIGHTRAG_DOC_FULL t where workspace=:workspace and ID in ({ids})",
"get_by_ids_text_chunks": "select ID,TOKENS,content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID in ({ids})",
"get_by_status_ids_full_docs": "select id,status from LIGHTRAG_DOC_FULL t where workspace=:workspace AND status=:status and ID in ({ids})",
"get_by_status_ids_text_chunks": "select id,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and status=:status ID in ({ids})",
"get_by_status_full_docs": "select id,status from LIGHTRAG_DOC_FULL t where workspace=:workspace AND status=:status",
"get_by_status_text_chunks": "select id,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and status=:status",
"filter_keys": "select id from {table_name} where workspace=:workspace and id in ({ids})",
"merge_doc_full": """ MERGE INTO LIGHTRAG_DOC_FULL a
USING DUAL
ON (a.id = :check_id)
WHEN NOT MATCHED THEN
INSERT(id,content,workspace) values(:id,:content,:workspace)
""",
"merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS a
USING DUAL
ON (a.id = :check_id)
WHEN NOT MATCHED THEN
INSERT(id,content,workspace,tokens,chunk_order_index,full_doc_id,content_vector)
values (:id,:content,:workspace,:tokens,:chunk_order_index,:full_doc_id,:content_vector) """,
"change_status": "update {table_name} set status=:status,updatetime=SYSDATE where workspace=:workspace and id=:id",
"merge_doc_full": """MERGE INTO LIGHTRAG_DOC_FULL a
USING DUAL
ON (a.id = :id and a.workspace = :workspace)
WHEN NOT MATCHED THEN
INSERT(id,content,workspace) values(:id,:content,:workspace)""",
"merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS
USING DUAL
ON (id = :id and workspace = :workspace)
WHEN NOT MATCHED THEN INSERT
(id,content,workspace,tokens,chunk_order_index,full_doc_id,content_vector,status)
values (:id,:content,:workspace,:tokens,:chunk_order_index,:full_doc_id,:content_vector,:status) """,
"upsert_llm_response_cache": """MERGE INTO LIGHTRAG_LLM_CACHE a
USING DUAL
ON (a.id = :id)
WHEN NOT MATCHED THEN
INSERT (workspace,id,original_prompt,return_value,cache_mode)
VALUES (:workspace,:id,:original_prompt,:return_value,:cache_mode)
WHEN MATCHED THEN UPDATE
SET original_prompt = :original_prompt,
return_value = :return_value,
cache_mode = :cache_mode,
updatetime = SYSDATE""",
# SQL for VectorStorage
"entities": """SELECT name as entity_name FROM
(SELECT id,name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
@@ -714,16 +795,22 @@ SQL_TEMPLATES = {
COLUMNS (a.name as source_name,b.name as target_name))""",
"merge_node": """MERGE INTO LIGHTRAG_GRAPH_NODES a
USING DUAL
ON (a.workspace = :workspace and a.name=:name and a.source_chunk_id=:source_chunk_id)
ON (a.workspace=:workspace and a.name=:name)
WHEN NOT MATCHED THEN
INSERT(workspace,name,entity_type,description,source_chunk_id,content,content_vector)
values (:workspace,:name,:entity_type,:description,:source_chunk_id,:content,:content_vector) """,
values (:workspace,:name,:entity_type,:description,:source_chunk_id,:content,:content_vector)
WHEN MATCHED THEN
UPDATE SET
entity_type=:entity_type,description=:description,source_chunk_id=:source_chunk_id,content=:content,content_vector=:content_vector,updatetime=SYSDATE""",
"merge_edge": """MERGE INTO LIGHTRAG_GRAPH_EDGES a
USING DUAL
ON (a.workspace = :workspace and a.source_name=:source_name and a.target_name=:target_name and a.source_chunk_id=:source_chunk_id)
ON (a.workspace=:workspace and a.source_name=:source_name and a.target_name=:target_name)
WHEN NOT MATCHED THEN
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector)
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector) """,
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector)
WHEN MATCHED THEN
UPDATE SET
weight=:weight,keywords=:keywords,description=:description,source_chunk_id=:source_chunk_id,content=:content,content_vector=:content_vector,updatetime=SYSDATE""",
"get_all_nodes": """WITH t0 AS (
SELECT name AS id, entity_type AS label, entity_type, description,
'["' || replace(source_chunk_id, '<SEP>', '","') || '"]' source_chunk_ids

View File

@@ -231,6 +231,16 @@ class PGKVStorage(BaseKVStorage):
else:
return None
async def all_keys(self) -> list[dict]:
if "llm_response_cache" == self.namespace:
sql = "select workspace,mode,id from lightrag_llm_cache"
res = await self.db.query(sql, multirows=True)
return res
else:
logger.error(
f"all_keys is only implemented for llm_response_cache, not for {self.namespace}"
)
async def filter_keys(self, keys: List[str]) -> Set[str]:
"""Filter out duplicated content"""
sql = SQL_TEMPLATES["filter_keys"].format(
@@ -412,7 +422,10 @@ class PGDocStatusStorage(DocStatusStorage):
async def filter_keys(self, data: list[str]) -> set[str]:
"""Return keys that don't exist in storage"""
sql = f"SELECT id FROM LIGHTRAG_DOC_STATUS WHERE workspace=$1 AND id IN ({",".join([f"'{_id}'" for _id in data])})"
keys = ",".join([f"'{_id}'" for _id in data])
sql = (
f"SELECT id FROM LIGHTRAG_DOC_STATUS WHERE workspace=$1 AND id IN ({keys})"
)
result = await self.db.query(sql, {"workspace": self.db.workspace}, True)
# The result is like [{'id': 'id1'}, {'id': 'id2'}, ...].
if result is None:

View File

@@ -17,6 +17,8 @@ from .operate import (
kg_query,
naive_query,
mix_kg_vector_query,
extract_keywords_only,
kg_query_with_keywords,
)
from .utils import (
@@ -26,6 +28,7 @@ from .utils import (
convert_response_to_json,
logger,
set_logger,
statistic_data,
)
from .base import (
BaseGraphStorage,
@@ -36,21 +39,30 @@ from .base import (
DocStatus,
)
from .storage import (
JsonKVStorage,
NanoVectorDBStorage,
NetworkXStorage,
JsonDocStatusStorage,
)
from .prompt import GRAPH_FIELD_SEP
# future KG integrations
# from .kg.ArangoDB_impl import (
# GraphStorage as ArangoDBStorage
# )
STORAGES = {
"JsonKVStorage": ".storage",
"NanoVectorDBStorage": ".storage",
"NetworkXStorage": ".storage",
"JsonDocStatusStorage": ".storage",
"Neo4JStorage": ".kg.neo4j_impl",
"OracleKVStorage": ".kg.oracle_impl",
"OracleGraphStorage": ".kg.oracle_impl",
"OracleVectorDBStorage": ".kg.oracle_impl",
"MilvusVectorDBStorge": ".kg.milvus_impl",
"MongoKVStorage": ".kg.mongo_impl",
"ChromaVectorDBStorage": ".kg.chroma_impl",
"TiDBKVStorage": ".kg.tidb_impl",
"TiDBVectorDBStorage": ".kg.tidb_impl",
"TiDBGraphStorage": ".kg.tidb_impl",
"PGKVStorage": ".kg.postgres_impl",
"PGVectorStorage": ".kg.postgres_impl",
"AGEStorage": ".kg.age_impl",
"PGGraphStorage": ".kg.postgres_impl",
"GremlinStorage": ".kg.gremlin_impl",
"PGDocStatusStorage": ".kg.postgres_impl",
}
def lazy_external_import(module_name: str, class_name: str):
@@ -66,34 +78,13 @@ def lazy_external_import(module_name: str, class_name: str):
def import_class(*args, **kwargs):
import importlib
# Import the module using importlib
module = importlib.import_module(module_name, package=package)
# Get the class from the module and instantiate it
cls = getattr(module, class_name)
return cls(*args, **kwargs)
return import_class
Neo4JStorage = lazy_external_import(".kg.neo4j_impl", "Neo4JStorage")
OracleKVStorage = lazy_external_import(".kg.oracle_impl", "OracleKVStorage")
OracleGraphStorage = lazy_external_import(".kg.oracle_impl", "OracleGraphStorage")
OracleVectorDBStorage = lazy_external_import(".kg.oracle_impl", "OracleVectorDBStorage")
MilvusVectorDBStorge = lazy_external_import(".kg.milvus_impl", "MilvusVectorDBStorge")
MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
ChromaVectorDBStorage = lazy_external_import(".kg.chroma_impl", "ChromaVectorDBStorage")
TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
PGKVStorage = lazy_external_import(".kg.postgres_impl", "PGKVStorage")
PGVectorStorage = lazy_external_import(".kg.postgres_impl", "PGVectorStorage")
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
PGGraphStorage = lazy_external_import(".kg.postgres_impl", "PGGraphStorage")
GremlinStorage = lazy_external_import(".kg.gremlin_impl", "GremlinStorage")
PGDocStatusStorage = lazy_external_import(".kg.postgres_impl", "PGDocStatusStorage")
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
"""
Ensure that there is always an event loop available.
@@ -197,34 +188,51 @@ class LightRAG:
logger.setLevel(self.log_level)
logger.info(f"Logger initialized for working directory: {self.working_dir}")
_print_config = ",\n ".join([f"{k} = {v}" for k, v in asdict(self).items()])
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
# @TODO: should move all storage setup here to leverage initial start params attached to self.
self.key_string_value_json_storage_cls: Type[BaseKVStorage] = (
self._get_storage_class()[self.kv_storage]
)
self.vector_db_storage_cls: Type[BaseVectorStorage] = self._get_storage_class()[
self.vector_storage
]
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class()[
self.graph_storage
]
if not os.path.exists(self.working_dir):
logger.info(f"Creating working directory {self.working_dir}")
os.makedirs(self.working_dir)
self.llm_response_cache = self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
# show config
global_config = asdict(self)
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
# Init LLM
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
self.embedding_func
)
# Initialize all storages
self.key_string_value_json_storage_cls: Type[BaseKVStorage] = (
self._get_storage_class(self.kv_storage)
)
self.vector_db_storage_cls: Type[BaseVectorStorage] = self._get_storage_class(
self.vector_storage
)
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class(
self.graph_storage
)
self.key_string_value_json_storage_cls = partial(
self.key_string_value_json_storage_cls, global_config=global_config
)
self.vector_db_storage_cls = partial(
self.vector_db_storage_cls, global_config=global_config
)
self.graph_storage_cls = partial(
self.graph_storage_cls, global_config=global_config
)
self.json_doc_status_storage = self.key_string_value_json_storage_cls(
namespace="json_doc_status_storage",
embedding_func=None,
)
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
self.embedding_func
self.llm_response_cache = self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
embedding_func=None,
)
####
@@ -232,17 +240,14 @@ class LightRAG:
####
self.full_docs = self.key_string_value_json_storage_cls(
namespace="full_docs",
global_config=asdict(self),
embedding_func=self.embedding_func,
)
self.text_chunks = self.key_string_value_json_storage_cls(
namespace="text_chunks",
global_config=asdict(self),
embedding_func=self.embedding_func,
)
self.chunk_entity_relation_graph = self.graph_storage_cls(
namespace="chunk_entity_relation",
global_config=asdict(self),
embedding_func=self.embedding_func,
)
####
@@ -251,72 +256,69 @@ class LightRAG:
self.entities_vdb = self.vector_db_storage_cls(
namespace="entities",
global_config=asdict(self),
embedding_func=self.embedding_func,
meta_fields={"entity_name"},
)
self.relationships_vdb = self.vector_db_storage_cls(
namespace="relationships",
global_config=asdict(self),
embedding_func=self.embedding_func,
meta_fields={"src_id", "tgt_id"},
)
self.chunks_vdb = self.vector_db_storage_cls(
namespace="chunks",
global_config=asdict(self),
embedding_func=self.embedding_func,
)
if self.llm_response_cache and hasattr(
self.llm_response_cache, "global_config"
):
hashing_kv = self.llm_response_cache
else:
hashing_kv = self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
embedding_func=None,
)
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
partial(
self.llm_model_func,
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
embedding_func=None,
),
hashing_kv=hashing_kv,
**self.llm_model_kwargs,
)
)
# Initialize document status storage
self.doc_status_storage_cls = self._get_storage_class()[self.doc_status_storage]
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
self.doc_status = self.doc_status_storage_cls(
namespace="doc_status",
global_config=asdict(self),
global_config=global_config,
embedding_func=None,
)
def _get_storage_class(self) -> dict:
return {
# kv storage
"JsonKVStorage": JsonKVStorage,
"OracleKVStorage": OracleKVStorage,
"MongoKVStorage": MongoKVStorage,
"TiDBKVStorage": TiDBKVStorage,
# vector storage
"NanoVectorDBStorage": NanoVectorDBStorage,
"OracleVectorDBStorage": OracleVectorDBStorage,
"MilvusVectorDBStorge": MilvusVectorDBStorge,
"ChromaVectorDBStorage": ChromaVectorDBStorage,
"TiDBVectorDBStorage": TiDBVectorDBStorage,
# graph storage
"NetworkXStorage": NetworkXStorage,
"Neo4JStorage": Neo4JStorage,
"OracleGraphStorage": OracleGraphStorage,
"AGEStorage": AGEStorage,
"PGGraphStorage": PGGraphStorage,
"PGKVStorage": PGKVStorage,
"PGDocStatusStorage": PGDocStatusStorage,
"PGVectorStorage": PGVectorStorage,
"TiDBGraphStorage": TiDBGraphStorage,
"GremlinStorage": GremlinStorage,
# "ArangoDBStorage": ArangoDBStorage
"JsonDocStatusStorage": JsonDocStatusStorage,
}
def _get_storage_class(self, storage_name: str) -> dict:
import_path = STORAGES[storage_name]
storage_class = lazy_external_import(import_path, storage_name)
return storage_class
def set_storage_client(self, db_client):
# Now only tested on Oracle Database
for storage in [
self.vector_db_storage_cls,
self.graph_storage_cls,
self.doc_status,
self.full_docs,
self.text_chunks,
self.llm_response_cache,
self.key_string_value_json_storage_cls,
self.chunks_vdb,
self.relationships_vdb,
self.entities_vdb,
self.graph_storage_cls,
self.chunk_entity_relation_graph,
self.llm_response_cache,
]:
# set client
storage.db = db_client
def insert(
self, string_or_strings, split_by_character=None, split_by_character_only=False
@@ -538,6 +540,195 @@ class LightRAG:
if update_storage:
await self._insert_done()
async def apipeline_process_documents(self, string_or_strings):
"""Input list remove duplicates, generate document IDs and initial pendding status, filter out already stored documents, store docs
Args:
string_or_strings: Single document string or list of document strings
"""
if isinstance(string_or_strings, str):
string_or_strings = [string_or_strings]
# 1. Remove duplicate contents from the list
unique_contents = list(set(doc.strip() for doc in string_or_strings))
logger.info(
f"Received {len(string_or_strings)} docs, contains {len(unique_contents)} new unique documents"
)
# 2. Generate document IDs and initial status
new_docs = {
compute_mdhash_id(content, prefix="doc-"): {
"content": content,
"content_summary": self._get_content_summary(content),
"content_length": len(content),
"status": DocStatus.PENDING,
"created_at": datetime.now().isoformat(),
"updated_at": None,
}
for content in unique_contents
}
# 3. Filter out already processed documents
_not_stored_doc_keys = await self.full_docs.filter_keys(list(new_docs.keys()))
if len(_not_stored_doc_keys) < len(new_docs):
logger.info(
f"Skipping {len(new_docs)-len(_not_stored_doc_keys)} already existing documents"
)
new_docs = {k: v for k, v in new_docs.items() if k in _not_stored_doc_keys}
if not new_docs:
logger.info("All documents have been processed or are duplicates")
return None
# 4. Store original document
for doc_id, doc in new_docs.items():
await self.full_docs.upsert({doc_id: {"content": doc["content"]}})
await self.full_docs.change_status(doc_id, DocStatus.PENDING)
logger.info(f"Stored {len(new_docs)} new unique documents")
async def apipeline_process_chunks(self):
"""Get pendding documents, split into chunks,insert chunks"""
# 1. get all pending and failed documents
_todo_doc_keys = []
_failed_doc = await self.full_docs.get_by_status_and_ids(
status=DocStatus.FAILED, ids=None
)
_pendding_doc = await self.full_docs.get_by_status_and_ids(
status=DocStatus.PENDING, ids=None
)
if _failed_doc:
_todo_doc_keys.extend([doc["id"] for doc in _failed_doc])
if _pendding_doc:
_todo_doc_keys.extend([doc["id"] for doc in _pendding_doc])
if not _todo_doc_keys:
logger.info("All documents have been processed or are duplicates")
return None
else:
logger.info(f"Filtered out {len(_todo_doc_keys)} not processed documents")
new_docs = {
doc["id"]: doc for doc in await self.full_docs.get_by_ids(_todo_doc_keys)
}
# 2. split docs into chunks, insert chunks, update doc status
chunk_cnt = 0
batch_size = self.addon_params.get("insert_batch_size", 10)
for i in range(0, len(new_docs), batch_size):
batch_docs = dict(list(new_docs.items())[i : i + batch_size])
for doc_id, doc in tqdm_async(
batch_docs.items(),
desc=f"Level 1 - Spliting doc in batch {i//batch_size + 1}",
):
try:
# Generate chunks from document
chunks = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_id,
"status": DocStatus.PENDING,
}
for dp in chunking_by_token_size(
doc["content"],
overlap_token_size=self.chunk_overlap_token_size,
max_token_size=self.chunk_token_size,
tiktoken_model=self.tiktoken_model_name,
)
}
chunk_cnt += len(chunks)
await self.text_chunks.upsert(chunks)
await self.text_chunks.change_status(doc_id, DocStatus.PROCESSED)
try:
# Store chunks in vector database
await self.chunks_vdb.upsert(chunks)
# Update doc status
await self.full_docs.change_status(doc_id, DocStatus.PROCESSED)
except Exception as e:
# Mark as failed if any step fails
await self.full_docs.change_status(doc_id, DocStatus.FAILED)
raise e
except Exception as e:
import traceback
error_msg = f"Failed to process document {doc_id}: {str(e)}\n{traceback.format_exc()}"
logger.error(error_msg)
continue
logger.info(f"Stored {chunk_cnt} chunks from {len(new_docs)} documents")
async def apipeline_process_extract_graph(self):
"""Get pendding or failed chunks, extract entities and relationships from each chunk"""
# 1. get all pending and failed chunks
_todo_chunk_keys = []
_failed_chunks = await self.text_chunks.get_by_status_and_ids(
status=DocStatus.FAILED, ids=None
)
_pendding_chunks = await self.text_chunks.get_by_status_and_ids(
status=DocStatus.PENDING, ids=None
)
if _failed_chunks:
_todo_chunk_keys.extend([doc["id"] for doc in _failed_chunks])
if _pendding_chunks:
_todo_chunk_keys.extend([doc["id"] for doc in _pendding_chunks])
if not _todo_chunk_keys:
logger.info("All chunks have been processed or are duplicates")
return None
# Process documents in batches
batch_size = self.addon_params.get("insert_batch_size", 10)
semaphore = asyncio.Semaphore(
batch_size
) # Control the number of tasks that are processed simultaneously
async def process_chunk(chunk_id):
async with semaphore:
chunks = {
i["id"]: i for i in await self.text_chunks.get_by_ids([chunk_id])
}
# Extract and store entities and relationships
try:
maybe_new_kg = await extract_entities(
chunks,
knowledge_graph_inst=self.chunk_entity_relation_graph,
entity_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
llm_response_cache=self.llm_response_cache,
global_config=asdict(self),
)
if maybe_new_kg is None:
logger.info("No entities or relationships extracted!")
# Update status to processed
await self.text_chunks.change_status(chunk_id, DocStatus.PROCESSED)
except Exception as e:
logger.error("Failed to extract entities and relationships")
# Mark as failed if any step fails
await self.text_chunks.change_status(chunk_id, DocStatus.FAILED)
raise e
with tqdm_async(
total=len(_todo_chunk_keys),
desc="\nLevel 1 - Processing chunks",
unit="chunk",
position=0,
) as progress:
tasks = []
for chunk_id in _todo_chunk_keys:
task = asyncio.create_task(process_chunk(chunk_id))
tasks.append(task)
for future in asyncio.as_completed(tasks):
await future
progress.update(1)
progress.set_postfix(
{
"LLM call": statistic_data["llm_call"],
"LLM cache": statistic_data["llm_cache"],
}
)
# Ensure all indexes are updated after each document
await self._insert_done()
async def _insert_done(self):
tasks = []
for storage_inst in [
@@ -753,6 +944,114 @@ class LightRAG:
await self._query_done()
return response
def query_with_separate_keyword_extraction(
self, query: str, prompt: str, param: QueryParam = QueryParam()
):
"""
1. Extract keywords from the 'query' using new function in operate.py.
2. Then run the standard aquery() flow with the final prompt (formatted_question).
"""
loop = always_get_an_event_loop()
return loop.run_until_complete(
self.aquery_with_separate_keyword_extraction(query, prompt, param)
)
async def aquery_with_separate_keyword_extraction(
self, query: str, prompt: str, param: QueryParam = QueryParam()
):
"""
1. Calls extract_keywords_only to get HL/LL keywords from 'query'.
2. Then calls kg_query(...) or naive_query(...), etc. as the main query, while also injecting the newly extracted keywords if needed.
"""
# ---------------------
# STEP 1: Keyword Extraction
# ---------------------
# We'll assume 'extract_keywords_only(...)' returns (hl_keywords, ll_keywords).
hl_keywords, ll_keywords = await extract_keywords_only(
text=query,
param=param,
global_config=asdict(self),
hashing_kv=self.llm_response_cache
or self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
embedding_func=None,
),
)
param.hl_keywords = (hl_keywords,)
param.ll_keywords = (ll_keywords,)
# ---------------------
# STEP 2: Final Query Logic
# ---------------------
# Create a new string with the prompt and the keywords
ll_keywords_str = ", ".join(ll_keywords)
hl_keywords_str = ", ".join(hl_keywords)
formatted_question = f"{prompt}\n\n### Keywords:\nHigh-level: {hl_keywords_str}\nLow-level: {ll_keywords_str}\n\n### Query:\n{query}"
if param.mode in ["local", "global", "hybrid"]:
response = await kg_query_with_keywords(
formatted_question,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
embedding_func=None,
),
)
elif param.mode == "naive":
response = await naive_query(
formatted_question,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
embedding_func=None,
),
)
elif param.mode == "mix":
response = await mix_kg_vector_query(
formatted_question,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
embedding_func=None,
),
)
else:
raise ValueError(f"Unknown mode {param.mode}")
await self._query_done()
return response
async def _query_done(self):
tasks = []
for storage_inst in [self.llm_response_cache]:

View File

@@ -20,6 +20,7 @@ from .utils import (
handle_cache,
save_to_cache,
CacheData,
statistic_data,
)
from .base import (
BaseGraphStorage,
@@ -96,6 +97,10 @@ async def _handle_entity_relation_summary(
description: str,
global_config: dict,
) -> str:
"""Handle entity relation summary
For each entity or relation, input is the combined description of already existing description and new description.
If too long, use LLM to summarize.
"""
use_llm_func: callable = global_config["llm_model_func"]
llm_max_tokens = global_config["llm_model_max_token_size"]
tiktoken_model_name = global_config["tiktoken_model_name"]
@@ -176,6 +181,7 @@ async def _merge_nodes_then_upsert(
knowledge_graph_inst: BaseGraphStorage,
global_config: dict,
):
"""Get existing nodes from knowledge graph use name,if exists, merge data, else create, then upsert."""
already_entity_types = []
already_source_ids = []
already_description = []
@@ -356,7 +362,7 @@ async def extract_entities(
llm_response_cache.global_config = new_config
need_to_restore = True
if history_messages:
history = json.dumps(history_messages)
history = json.dumps(history_messages, ensure_ascii=False)
_prompt = history + "\n" + input_text
else:
_prompt = input_text
@@ -368,8 +374,10 @@ async def extract_entities(
if need_to_restore:
llm_response_cache.global_config = global_config
if cached_return:
logger.debug(f"Found cache for {arg_hash}")
statistic_data["llm_cache"] += 1
return cached_return
statistic_data["llm_call"] += 1
if history_messages:
res: str = await use_llm_func(
input_text, history_messages=history_messages
@@ -388,6 +396,11 @@ async def extract_entities(
return await use_llm_func(input_text)
async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]):
""" "Prpocess a single chunk
Args:
chunk_key_dp (tuple[str, TextChunkSchema]):
("chunck-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
"""
nonlocal already_processed, already_entities, already_relations
chunk_key = chunk_key_dp[0]
chunk_dp = chunk_key_dp[1]
@@ -451,10 +464,8 @@ async def extract_entities(
now_ticks = PROMPTS["process_tickers"][
already_processed % len(PROMPTS["process_tickers"])
]
print(
logger.debug(
f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r",
end="",
flush=True,
)
return dict(maybe_nodes), dict(maybe_edges)
@@ -462,8 +473,10 @@ async def extract_entities(
for result in tqdm_async(
asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
total=len(ordered_chunks),
desc="Extracting entities from chunks",
desc="Level 2 - Extracting entities and relationships",
unit="chunk",
position=1,
leave=False,
):
results.append(await result)
@@ -474,7 +487,7 @@ async def extract_entities(
maybe_nodes[k].extend(v)
for k, v in m_edges.items():
maybe_edges[tuple(sorted(k))].extend(v)
logger.info("Inserting entities into storage...")
logger.debug("Inserting entities into storage...")
all_entities_data = []
for result in tqdm_async(
asyncio.as_completed(
@@ -484,12 +497,14 @@ async def extract_entities(
]
),
total=len(maybe_nodes),
desc="Inserting entities",
desc="Level 3 - Inserting entities",
unit="entity",
position=2,
leave=False,
):
all_entities_data.append(await result)
logger.info("Inserting relationships into storage...")
logger.debug("Inserting relationships into storage...")
all_relationships_data = []
for result in tqdm_async(
asyncio.as_completed(
@@ -501,8 +516,10 @@ async def extract_entities(
]
),
total=len(maybe_edges),
desc="Inserting relationships",
desc="Level 3 - Inserting relationships",
unit="relationship",
position=3,
leave=False,
):
all_relationships_data.append(await result)
@@ -681,6 +698,219 @@ async def kg_query(
return response
async def kg_query_with_keywords(
query: str,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
global_config: dict,
hashing_kv: BaseKVStorage = None,
) -> str:
"""
Refactored kg_query that does NOT extract keywords by itself.
It expects hl_keywords and ll_keywords to be set in query_param, or defaults to empty.
Then it uses those to build context and produce a final LLM response.
"""
# ---------------------------
# 0) Handle potential cache
# ---------------------------
use_model_func = global_config["llm_model_func"]
args_hash = compute_args_hash(query_param.mode, query)
cached_response, quantized, min_val, max_val = await handle_cache(
hashing_kv, args_hash, query, query_param.mode
)
if cached_response is not None:
return cached_response
# ---------------------------
# 1) RETRIEVE KEYWORDS FROM query_param
# ---------------------------
# If these fields don't exist, default to empty lists/strings.
hl_keywords = getattr(query_param, "hl_keywords", []) or []
ll_keywords = getattr(query_param, "ll_keywords", []) or []
# If neither has any keywords, you could handle that logic here.
if not hl_keywords and not ll_keywords:
logger.warning(
"No keywords found in query_param. Could default to global mode or fail."
)
return PROMPTS["fail_response"]
if not ll_keywords and query_param.mode in ["local", "hybrid"]:
logger.warning("low_level_keywords is empty, switching to global mode.")
query_param.mode = "global"
if not hl_keywords and query_param.mode in ["global", "hybrid"]:
logger.warning("high_level_keywords is empty, switching to local mode.")
query_param.mode = "local"
# Flatten low-level and high-level keywords if needed
ll_keywords_flat = (
[item for sublist in ll_keywords for item in sublist]
if any(isinstance(i, list) for i in ll_keywords)
else ll_keywords
)
hl_keywords_flat = (
[item for sublist in hl_keywords for item in sublist]
if any(isinstance(i, list) for i in hl_keywords)
else hl_keywords
)
# Join the flattened lists
ll_keywords_str = ", ".join(ll_keywords_flat) if ll_keywords_flat else ""
hl_keywords_str = ", ".join(hl_keywords_flat) if hl_keywords_flat else ""
keywords = [ll_keywords_str, hl_keywords_str]
logger.info("Using %s mode for query processing", query_param.mode)
# ---------------------------
# 2) BUILD CONTEXT
# ---------------------------
context = await _build_query_context(
keywords,
knowledge_graph_inst,
entities_vdb,
relationships_vdb,
text_chunks_db,
query_param,
)
if not context:
return PROMPTS["fail_response"]
# If only context is needed, return it
if query_param.only_need_context:
return context
# ---------------------------
# 3) BUILD THE SYSTEM PROMPT + CALL LLM
# ---------------------------
sys_prompt_temp = PROMPTS["rag_response"]
sys_prompt = sys_prompt_temp.format(
context_data=context, response_type=query_param.response_type
)
if query_param.only_need_prompt:
return sys_prompt
# Now call the LLM with the final system prompt
response = await use_model_func(
query,
system_prompt=sys_prompt,
stream=query_param.stream,
)
# Clean up the response
if isinstance(response, str) and len(response) > len(sys_prompt):
response = (
response.replace(sys_prompt, "")
.replace("user", "")
.replace("model", "")
.replace(query, "")
.replace("<system>", "")
.replace("</system>", "")
.strip()
)
# ---------------------------
# 4) SAVE TO CACHE
# ---------------------------
await save_to_cache(
hashing_kv,
CacheData(
args_hash=args_hash,
content=response,
prompt=query,
quantized=quantized,
min_val=min_val,
max_val=max_val,
mode=query_param.mode,
),
)
return response
async def extract_keywords_only(
text: str,
param: QueryParam,
global_config: dict,
hashing_kv: BaseKVStorage = None,
) -> tuple[list[str], list[str]]:
"""
Extract high-level and low-level keywords from the given 'text' using the LLM.
This method does NOT build the final RAG context or provide a final answer.
It ONLY extracts keywords (hl_keywords, ll_keywords).
"""
# 1. Handle cache if needed
args_hash = compute_args_hash(param.mode, text)
cached_response, quantized, min_val, max_val = await handle_cache(
hashing_kv, args_hash, text, param.mode
)
if cached_response is not None:
# parse the cached_response if its JSON containing keywords
# or simply return (hl_keywords, ll_keywords) from cached
# Assuming cached_response is in the same JSON structure:
match = re.search(r"\{.*\}", cached_response, re.DOTALL)
if match:
keywords_data = json.loads(match.group(0))
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
return hl_keywords, ll_keywords
return [], []
# 2. Build the examples
example_number = global_config["addon_params"].get("example_number", None)
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
examples = "\n".join(
PROMPTS["keywords_extraction_examples"][: int(example_number)]
)
else:
examples = "\n".join(PROMPTS["keywords_extraction_examples"])
language = global_config["addon_params"].get(
"language", PROMPTS["DEFAULT_LANGUAGE"]
)
# 3. Build the keyword-extraction prompt
kw_prompt_temp = PROMPTS["keywords_extraction"]
kw_prompt = kw_prompt_temp.format(query=text, examples=examples, language=language)
# 4. Call the LLM for keyword extraction
use_model_func = global_config["llm_model_func"]
result = await use_model_func(kw_prompt, keyword_extraction=True)
# 5. Parse out JSON from the LLM response
match = re.search(r"\{.*\}", result, re.DOTALL)
if not match:
logger.error("No JSON-like structure found in the result.")
return [], []
try:
keywords_data = json.loads(match.group(0))
except json.JSONDecodeError as e:
logger.error(f"JSON parsing error: {e}")
return [], []
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
# 6. Cache the result if needed
await save_to_cache(
hashing_kv,
CacheData(
args_hash=args_hash,
content=result,
prompt=text,
quantized=quantized,
min_val=min_val,
max_val=max_val,
mode=param.mode,
),
)
return hl_keywords, ll_keywords
async def _build_query_context(
query: list,
knowledge_graph_inst: BaseGraphStorage,

View File

@@ -30,13 +30,18 @@ class UnlimitedSemaphore:
ENCODER = None
statistic_data = {"llm_call": 0, "llm_cache": 0, "embed_call": 0}
logger = logging.getLogger("lightrag")
# Set httpx logging level to WARNING
logging.getLogger("httpx").setLevel(logging.WARNING)
def set_logger(log_file: str):
logger.setLevel(logging.DEBUG)
file_handler = logging.FileHandler(log_file)
file_handler = logging.FileHandler(log_file, encoding="utf-8")
file_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
@@ -453,7 +458,8 @@ async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
return None, None, None, None
# For naive mode, only use simple cache matching
if mode == "naive":
# if mode == "naive":
if mode == "default":
if exists_func(hashing_kv, "get_by_mode_and_id"):
mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {}
else:
@@ -473,7 +479,9 @@ async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
quantized = min_val = max_val = None
if is_embedding_cache_enabled:
# Use embedding cache
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
embedding_model_func = hashing_kv.global_config[
"embedding_func"
].func # ["func"]
llm_model_func = hashing_kv.global_config.get("llm_model_func")
current_embedding = await embedding_model_func([prompt])