4
.gitignore
vendored
4
.gitignore
vendored
@@ -5,4 +5,8 @@ book.txt
|
||||
lightrag-dev/
|
||||
.idea/
|
||||
dist/
|
||||
env/
|
||||
local_neo4jWorkDir/
|
||||
neo4jWorkDir/
|
||||
ignore_this.txt
|
||||
.venv/
|
||||
|
56
Dockerfile
Normal file
56
Dockerfile
Normal file
@@ -0,0 +1,56 @@
|
||||
FROM debian:bullseye-slim
|
||||
ENV JAVA_HOME=/opt/java/openjdk
|
||||
COPY --from=eclipse-temurin:17 $JAVA_HOME $JAVA_HOME
|
||||
ENV PATH="${JAVA_HOME}/bin:${PATH}" \
|
||||
NEO4J_SHA256=7ce97bd9a4348af14df442f00b3dc5085b5983d6f03da643744838c7a1bc8ba7 \
|
||||
NEO4J_TARBALL=neo4j-enterprise-5.24.2-unix.tar.gz \
|
||||
NEO4J_EDITION=enterprise \
|
||||
NEO4J_HOME="/var/lib/neo4j" \
|
||||
LANG=C.UTF-8
|
||||
ARG NEO4J_URI=https://dist.neo4j.org/neo4j-enterprise-5.24.2-unix.tar.gz
|
||||
|
||||
RUN addgroup --gid 7474 --system neo4j && adduser --uid 7474 --system --no-create-home --home "${NEO4J_HOME}" --ingroup neo4j neo4j
|
||||
|
||||
COPY ./local-package/* /startup/
|
||||
|
||||
RUN apt update \
|
||||
&& apt-get install -y curl gcc git jq make procps tini wget \
|
||||
&& curl --fail --silent --show-error --location --remote-name ${NEO4J_URI} \
|
||||
&& echo "${NEO4J_SHA256} ${NEO4J_TARBALL}" | sha256sum -c --strict --quiet \
|
||||
&& tar --extract --file ${NEO4J_TARBALL} --directory /var/lib \
|
||||
&& mv /var/lib/neo4j-* "${NEO4J_HOME}" \
|
||||
&& rm ${NEO4J_TARBALL} \
|
||||
&& sed -i 's/Package Type:.*/Package Type: docker bullseye/' $NEO4J_HOME/packaging_info \
|
||||
&& mv /startup/neo4j-admin-report.sh "${NEO4J_HOME}"/bin/neo4j-admin-report \
|
||||
&& mv "${NEO4J_HOME}"/data /data \
|
||||
&& mv "${NEO4J_HOME}"/logs /logs \
|
||||
&& chown -R neo4j:neo4j /data \
|
||||
&& chmod -R 777 /data \
|
||||
&& chown -R neo4j:neo4j /logs \
|
||||
&& chmod -R 777 /logs \
|
||||
&& chown -R neo4j:neo4j "${NEO4J_HOME}" \
|
||||
&& chmod -R 777 "${NEO4J_HOME}" \
|
||||
&& chmod -R 755 "${NEO4J_HOME}/bin" \
|
||||
&& ln -s /data "${NEO4J_HOME}"/data \
|
||||
&& ln -s /logs "${NEO4J_HOME}"/logs \
|
||||
&& git clone https://github.com/ncopa/su-exec.git \
|
||||
&& cd su-exec \
|
||||
&& git checkout 4c3bb42b093f14da70d8ab924b487ccfbb1397af \
|
||||
&& echo d6c40440609a23483f12eb6295b5191e94baf08298a856bab6e15b10c3b82891 su-exec.c | sha256sum -c \
|
||||
&& echo 2a87af245eb125aca9305a0b1025525ac80825590800f047419dc57bba36b334 Makefile | sha256sum -c \
|
||||
&& make \
|
||||
&& mv /su-exec/su-exec /usr/bin/su-exec \
|
||||
&& apt-get -y purge --auto-remove curl gcc git make \
|
||||
&& rm -rf /var/lib/apt/lists/* /su-exec
|
||||
|
||||
|
||||
ENV PATH "${NEO4J_HOME}"/bin:$PATH
|
||||
|
||||
WORKDIR "${NEO4J_HOME}"
|
||||
|
||||
VOLUME /data /logs
|
||||
|
||||
EXPOSE 7474 7473 7687
|
||||
|
||||
ENTRYPOINT ["tini", "-g", "--", "/startup/docker-entrypoint.sh"]
|
||||
CMD ["neo4j"]
|
33
README.md
33
README.md
@@ -161,6 +161,39 @@ rag = LightRAG(
|
||||
```
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary> Using Neo4J for Storage </summary>
|
||||
|
||||
* For production level scenarios you will most likely want to leverage an enterprise solution
|
||||
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
|
||||
* See: https://hub.docker.com/_/neo4j
|
||||
|
||||
|
||||
```python
|
||||
export NEO4J_URI="neo4j://localhost:7687"
|
||||
export NEO4J_USERNAME="neo4j"
|
||||
export NEO4J_PASSWORD="password"
|
||||
|
||||
When you launch the project be sure to override the default KG: NetworkS
|
||||
by specifying kg="Neo4JStorage".
|
||||
|
||||
# Note: Default settings use NetworkX
|
||||
#Initialize LightRAG with Neo4J implementation.
|
||||
WORKING_DIR = "./local_neo4jWorkDir"
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
kg="Neo4JStorage", #<-----------override KG default
|
||||
log_level="DEBUG" #<-----------override log_level default
|
||||
)
|
||||
```
|
||||
see test_neo4j.py for a working example.
|
||||
</details>
|
||||
|
||||
|
||||
|
||||
<details>
|
||||
<summary> Using Ollama Models </summary>
|
||||
|
||||
|
34
get_all_edges_nx.py
Normal file
34
get_all_edges_nx.py
Normal file
@@ -0,0 +1,34 @@
|
||||
import networkx as nx
|
||||
|
||||
G = nx.read_graphml('./dickensTestEmbedcall/graph_chunk_entity_relation.graphml')
|
||||
|
||||
def get_all_edges_and_nodes(G):
|
||||
# Get all edges and their properties
|
||||
edges_with_properties = []
|
||||
for u, v, data in G.edges(data=True):
|
||||
edges_with_properties.append({
|
||||
'start': u,
|
||||
'end': v,
|
||||
'label': data.get('label', ''), # Assuming 'label' is used for edge type
|
||||
'properties': data,
|
||||
'start_node_properties': G.nodes[u],
|
||||
'end_node_properties': G.nodes[v]
|
||||
})
|
||||
|
||||
return edges_with_properties
|
||||
|
||||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
# Assume G is your NetworkX graph loaded from Neo4j
|
||||
|
||||
all_edges = get_all_edges_and_nodes(G)
|
||||
|
||||
# Print all edges and node properties
|
||||
for edge in all_edges:
|
||||
print(f"Edge Label: {edge['label']}")
|
||||
print(f"Edge Properties: {edge['properties']}")
|
||||
print(f"Start Node: {edge['start']}")
|
||||
print(f"Start Node Properties: {edge['start_node_properties']}")
|
||||
print(f"End Node: {edge['end']}")
|
||||
print(f"End Node Properties: {edge['end_node_properties']}")
|
||||
print("---")
|
4621
graph_chunk_entity_relation.gefx
Normal file
4621
graph_chunk_entity_relation.gefx
Normal file
File diff suppressed because it is too large
Load Diff
3
lightrag/kg/__init__.py
Normal file
3
lightrag/kg/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
# print ("init package vars here. ......")
|
||||
|
||||
|
278
lightrag/kg/neo4j_impl.py
Normal file
278
lightrag/kg/neo4j_impl.py
Normal file
@@ -0,0 +1,278 @@
|
||||
import asyncio
|
||||
import html
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Union, cast, Tuple, List, Dict
|
||||
import numpy as np
|
||||
import inspect
|
||||
from lightrag.utils import load_json, logger, write_json
|
||||
from ..base import (
|
||||
BaseGraphStorage
|
||||
)
|
||||
from neo4j import AsyncGraphDatabase,exceptions as neo4jExceptions,AsyncDriver,AsyncSession, AsyncManagedTransaction
|
||||
|
||||
from contextlib import asynccontextmanager
|
||||
|
||||
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Neo4JStorage(BaseGraphStorage):
|
||||
@staticmethod
|
||||
def load_nx_graph(file_name):
|
||||
print ("no preloading of graph with neo4j in production")
|
||||
|
||||
def __init__(self, namespace, global_config):
|
||||
super().__init__(namespace=namespace, global_config=global_config)
|
||||
self._driver = None
|
||||
self._driver_lock = asyncio.Lock()
|
||||
URI = os.environ["NEO4J_URI"]
|
||||
USERNAME = os.environ["NEO4J_USERNAME"]
|
||||
PASSWORD = os.environ["NEO4J_PASSWORD"]
|
||||
self._driver: AsyncDriver = AsyncGraphDatabase.driver(URI, auth=(USERNAME, PASSWORD))
|
||||
return None
|
||||
|
||||
def __post_init__(self):
|
||||
self._node_embed_algorithms = {
|
||||
"node2vec": self._node2vec_embed,
|
||||
}
|
||||
|
||||
|
||||
async def close(self):
|
||||
if self._driver:
|
||||
await self._driver.close()
|
||||
self._driver = None
|
||||
|
||||
|
||||
|
||||
async def __aexit__(self, exc_type, exc, tb):
|
||||
if self._driver:
|
||||
await self._driver.close()
|
||||
|
||||
async def index_done_callback(self):
|
||||
print ("KG successfully indexed.")
|
||||
|
||||
|
||||
async def has_node(self, node_id: str) -> bool:
|
||||
entity_name_label = node_id.strip('\"')
|
||||
|
||||
async with self._driver.session() as session:
|
||||
query = f"MATCH (n:`{entity_name_label}`) RETURN count(n) > 0 AS node_exists"
|
||||
result = await session.run(query)
|
||||
single_result = await result.single()
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{single_result["node_exists"]}'
|
||||
)
|
||||
return single_result["node_exists"]
|
||||
|
||||
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
||||
entity_name_label_source = source_node_id.strip('\"')
|
||||
entity_name_label_target = target_node_id.strip('\"')
|
||||
|
||||
async with self._driver.session() as session:
|
||||
query = (
|
||||
f"MATCH (a:`{entity_name_label_source}`)-[r]-(b:`{entity_name_label_target}`) "
|
||||
"RETURN COUNT(r) > 0 AS edgeExists"
|
||||
)
|
||||
result = await session.run(query)
|
||||
single_result = await result.single()
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{single_result["edgeExists"]}'
|
||||
)
|
||||
return single_result["edgeExists"]
|
||||
|
||||
def close(self):
|
||||
self._driver.close()
|
||||
|
||||
|
||||
|
||||
|
||||
async def get_node(self, node_id: str) -> Union[dict, None]:
|
||||
async with self._driver.session() as session:
|
||||
entity_name_label = node_id.strip('\"')
|
||||
query = f"MATCH (n:`{entity_name_label}`) RETURN n"
|
||||
result = await session.run(query)
|
||||
record = await result.single()
|
||||
if record:
|
||||
node = record["n"]
|
||||
node_dict = dict(node)
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}: query: {query}, result: {node_dict}'
|
||||
)
|
||||
return node_dict
|
||||
return None
|
||||
|
||||
|
||||
|
||||
async def node_degree(self, node_id: str) -> int:
|
||||
entity_name_label = node_id.strip('\"')
|
||||
|
||||
async with self._driver.session() as session:
|
||||
query = f"""
|
||||
MATCH (n:`{entity_name_label}`)
|
||||
RETURN COUNT{{ (n)--() }} AS totalEdgeCount
|
||||
"""
|
||||
result = await session.run(query)
|
||||
record = await result.single()
|
||||
if record:
|
||||
edge_count = record["totalEdgeCount"]
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{edge_count}'
|
||||
)
|
||||
return edge_count
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
||||
entity_name_label_source = src_id.strip('\"')
|
||||
entity_name_label_target = tgt_id.strip('\"')
|
||||
src_degree = await self.node_degree(entity_name_label_source)
|
||||
trg_degree = await self.node_degree(entity_name_label_target)
|
||||
|
||||
# Convert None to 0 for addition
|
||||
src_degree = 0 if src_degree is None else src_degree
|
||||
trg_degree = 0 if trg_degree is None else trg_degree
|
||||
|
||||
degrees = int(src_degree) + int(trg_degree)
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:src_Degree+trg_degree:result:{degrees}'
|
||||
)
|
||||
return degrees
|
||||
|
||||
|
||||
|
||||
async def get_edge(self, source_node_id: str, target_node_id: str) -> Union[dict, None]:
|
||||
entity_name_label_source = source_node_id.strip('\"')
|
||||
entity_name_label_target = target_node_id.strip('\"')
|
||||
"""
|
||||
Find all edges between nodes of two given labels
|
||||
|
||||
Args:
|
||||
source_node_label (str): Label of the source nodes
|
||||
target_node_label (str): Label of the target nodes
|
||||
|
||||
Returns:
|
||||
list: List of all relationships/edges found
|
||||
"""
|
||||
async with self._driver.session() as session:
|
||||
query = f"""
|
||||
MATCH (start:`{entity_name_label_source}`)-[r]->(end:`{entity_name_label_target}`)
|
||||
RETURN properties(r) as edge_properties
|
||||
LIMIT 1
|
||||
""".format(entity_name_label_source=entity_name_label_source, entity_name_label_target=entity_name_label_target)
|
||||
|
||||
result = await session.run(query)
|
||||
record = await result.single()
|
||||
if record:
|
||||
result = dict(record["edge_properties"])
|
||||
logger.debug(
|
||||
f'{inspect.currentframe().f_code.co_name}:query:{query}:result:{result}'
|
||||
)
|
||||
return result
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
async def get_node_edges(self, source_node_id: str)-> List[Tuple[str, str]]:
|
||||
node_label = source_node_id.strip('\"')
|
||||
|
||||
"""
|
||||
Retrieves all edges (relationships) for a particular node identified by its label.
|
||||
:return: List of dictionaries containing edge information
|
||||
"""
|
||||
query = f"""MATCH (n:`{node_label}`)
|
||||
OPTIONAL MATCH (n)-[r]-(connected)
|
||||
RETURN n, r, connected"""
|
||||
async with self._driver.session() as session:
|
||||
results = await session.run(query)
|
||||
edges = []
|
||||
async for record in results:
|
||||
source_node = record['n']
|
||||
connected_node = record['connected']
|
||||
|
||||
source_label = list(source_node.labels)[0] if source_node.labels else None
|
||||
target_label = list(connected_node.labels)[0] if connected_node and connected_node.labels else None
|
||||
|
||||
if source_label and target_label:
|
||||
edges.append((source_label, target_label))
|
||||
|
||||
return edges
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((neo4jExceptions.ServiceUnavailable, neo4jExceptions.TransientError, neo4jExceptions.WriteServiceUnavailable)),
|
||||
)
|
||||
async def upsert_node(self, node_id: str, node_data: Dict[str, Any]):
|
||||
"""
|
||||
Upsert a node in the Neo4j database.
|
||||
|
||||
Args:
|
||||
node_id: The unique identifier for the node (used as label)
|
||||
node_data: Dictionary of node properties
|
||||
"""
|
||||
label = node_id.strip('\"')
|
||||
properties = node_data
|
||||
|
||||
async def _do_upsert(tx: AsyncManagedTransaction):
|
||||
query = f"""
|
||||
MERGE (n:`{label}`)
|
||||
SET n += $properties
|
||||
"""
|
||||
await tx.run(query, properties=properties)
|
||||
logger.debug(f"Upserted node with label '{label}' and properties: {properties}")
|
||||
|
||||
try:
|
||||
async with self._driver.session() as session:
|
||||
await session.execute_write(_do_upsert)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during upsert: {str(e)}")
|
||||
raise
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((neo4jExceptions.ServiceUnavailable, neo4jExceptions.TransientError, neo4jExceptions.WriteServiceUnavailable)),
|
||||
)
|
||||
async def upsert_edge(self, source_node_id: str, target_node_id: str, edge_data: Dict[str, Any]):
|
||||
"""
|
||||
Upsert an edge and its properties between two nodes identified by their labels.
|
||||
|
||||
Args:
|
||||
source_node_id (str): Label of the source node (used as identifier)
|
||||
target_node_id (str): Label of the target node (used as identifier)
|
||||
edge_data (dict): Dictionary of properties to set on the edge
|
||||
"""
|
||||
source_node_label = source_node_id.strip('\"')
|
||||
target_node_label = target_node_id.strip('\"')
|
||||
edge_properties = edge_data
|
||||
|
||||
async def _do_upsert_edge(tx: AsyncManagedTransaction):
|
||||
query = f"""
|
||||
MATCH (source:`{source_node_label}`)
|
||||
WITH source
|
||||
MATCH (target:`{target_node_label}`)
|
||||
MERGE (source)-[r:DIRECTED]->(target)
|
||||
SET r += $properties
|
||||
RETURN r
|
||||
"""
|
||||
await tx.run(query, properties=edge_properties)
|
||||
logger.debug(f"Upserted edge from '{source_node_label}' to '{target_node_label}' with properties: {edge_properties}")
|
||||
|
||||
try:
|
||||
async with self._driver.session() as session:
|
||||
await session.execute_write(_do_upsert_edge)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during edge upsert: {str(e)}")
|
||||
raise
|
||||
async def _node2vec_embed(self):
|
||||
print ("Implemented but never called.")
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import asyncio
|
||||
import os
|
||||
import importlib
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from datetime import datetime
|
||||
from functools import partial
|
||||
@@ -23,6 +24,18 @@ from .storage import (
|
||||
NanoVectorDBStorage,
|
||||
NetworkXStorage,
|
||||
)
|
||||
|
||||
from .kg.neo4j_impl import (
|
||||
Neo4JStorage
|
||||
)
|
||||
#future KG integrations
|
||||
|
||||
# from .kg.ArangoDB_impl import (
|
||||
# GraphStorage as ArangoDBStorage
|
||||
# )
|
||||
|
||||
|
||||
|
||||
from .utils import (
|
||||
EmbeddingFunc,
|
||||
compute_mdhash_id,
|
||||
@@ -44,18 +57,27 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
logger.info("Creating a new event loop in a sub-thread.")
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
logger.info("Creating a new event loop in main thread.")
|
||||
# loop = asyncio.new_event_loop()
|
||||
# asyncio.set_event_loop(loop)
|
||||
loop = asyncio.get_event_loop()
|
||||
return loop
|
||||
|
||||
|
||||
@dataclass
|
||||
class LightRAG:
|
||||
|
||||
working_dir: str = field(
|
||||
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
|
||||
)
|
||||
|
||||
kg: str = field(default="NetworkXStorage")
|
||||
|
||||
current_log_level = logger.level
|
||||
log_level: str = field(default=current_log_level)
|
||||
|
||||
|
||||
|
||||
# text chunking
|
||||
chunk_token_size: int = 1200
|
||||
chunk_overlap_token_size: int = 100
|
||||
@@ -94,7 +116,6 @@ class LightRAG:
|
||||
key_string_value_json_storage_cls: Type[BaseKVStorage] = JsonKVStorage
|
||||
vector_db_storage_cls: Type[BaseVectorStorage] = NanoVectorDBStorage
|
||||
vector_db_storage_cls_kwargs: dict = field(default_factory=dict)
|
||||
graph_storage_cls: Type[BaseGraphStorage] = NetworkXStorage
|
||||
enable_llm_cache: bool = True
|
||||
|
||||
# extension
|
||||
@@ -104,11 +125,16 @@ class LightRAG:
|
||||
def __post_init__(self):
|
||||
log_file = os.path.join(self.working_dir, "lightrag.log")
|
||||
set_logger(log_file)
|
||||
logger.setLevel(self.log_level)
|
||||
|
||||
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
||||
|
||||
_print_config = ",\n ".join([f"{k} = {v}" for k, v in asdict(self).items()])
|
||||
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
||||
|
||||
#@TODO: should move all storage setup here to leverage initial start params attached to self.
|
||||
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class()[self.kg]
|
||||
|
||||
if not os.path.exists(self.working_dir):
|
||||
logger.info(f"Creating working directory {self.working_dir}")
|
||||
os.makedirs(self.working_dir)
|
||||
@@ -161,6 +187,12 @@ class LightRAG:
|
||||
**self.llm_model_kwargs,
|
||||
)
|
||||
)
|
||||
def _get_storage_class(self) -> Type[BaseGraphStorage]:
|
||||
return {
|
||||
"Neo4JStorage": Neo4JStorage,
|
||||
"NetworkXStorage": NetworkXStorage,
|
||||
# "ArangoDBStorage": ArangoDBStorage
|
||||
}
|
||||
|
||||
def insert(self, string_or_strings):
|
||||
loop = always_get_an_event_loop()
|
||||
|
@@ -466,7 +466,9 @@ async def _build_local_query_context(
|
||||
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
||||
query_param: QueryParam,
|
||||
):
|
||||
|
||||
results = await entities_vdb.query(query, top_k=query_param.top_k)
|
||||
|
||||
if not len(results):
|
||||
return None
|
||||
node_datas = await asyncio.gather(
|
||||
@@ -481,7 +483,7 @@ async def _build_local_query_context(
|
||||
{**n, "entity_name": k["entity_name"], "rank": d}
|
||||
for k, n, d in zip(results, node_datas, node_degrees)
|
||||
if n is not None
|
||||
]
|
||||
]#what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
|
||||
use_text_units = await _find_most_related_text_unit_from_entities(
|
||||
node_datas, query_param, text_chunks_db, knowledge_graph_inst
|
||||
)
|
||||
@@ -907,7 +909,6 @@ async def hybrid_query(
|
||||
.strip()
|
||||
)
|
||||
result = "{" + result.split("{")[1].split("}")[0] + "}"
|
||||
|
||||
keywords_data = json.loads(result)
|
||||
hl_keywords = keywords_data.get("high_level_keywords", [])
|
||||
ll_keywords = keywords_data.get("low_level_keywords", [])
|
||||
@@ -927,6 +928,7 @@ async def hybrid_query(
|
||||
query_param,
|
||||
)
|
||||
|
||||
|
||||
if hl_keywords:
|
||||
high_level_context = await _build_global_query_context(
|
||||
hl_keywords,
|
||||
@@ -937,6 +939,7 @@ async def hybrid_query(
|
||||
query_param,
|
||||
)
|
||||
|
||||
|
||||
context = combine_contexts(high_level_context, low_level_context)
|
||||
|
||||
if query_param.only_need_context:
|
||||
@@ -1043,6 +1046,7 @@ async def naive_query(
|
||||
chunks_ids = [r["id"] for r in results]
|
||||
chunks = await text_chunks_db.get_by_ids(chunks_ids)
|
||||
|
||||
|
||||
maybe_trun_chunks = truncate_list_by_token_size(
|
||||
chunks,
|
||||
key=lambda x: x["content"],
|
||||
|
@@ -233,6 +233,8 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||
return await self._node_embed_algorithms[algorithm]()
|
||||
|
||||
|
||||
#@TODO: NOT USED
|
||||
async def _node2vec_embed(self):
|
||||
from graspologic import embed
|
||||
|
||||
|
@@ -4,6 +4,7 @@ aiohttp
|
||||
graspologic
|
||||
hnswlib
|
||||
nano-vectordb
|
||||
neo4j
|
||||
networkx
|
||||
ollama
|
||||
openai
|
||||
|
35
test.py
Normal file
35
test.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||
from pprint import pprint
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
#########
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
38
test_neo4j.py
Normal file
38
test_neo4j.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
#########
|
||||
|
||||
WORKING_DIR = "./local_neo4jWorkDir"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
kg="Neo4JStorage",
|
||||
log_level="INFO"
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
Reference in New Issue
Block a user