diff --git a/lightrag/llm.py b/lightrag/llm.py index e670c6ce..2810d93e 100644 --- a/lightrag/llm.py +++ b/lightrag/llm.py @@ -478,6 +478,7 @@ class GPTKeywordExtractionFormat(BaseModel): async def gpt_4o_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: + keyword_extraction = kwargs.pop("keyword_extraction", None) if keyword_extraction: kwargs["response_format"] = GPTKeywordExtractionFormat return await openai_complete_if_cache( @@ -492,6 +493,7 @@ async def gpt_4o_complete( async def gpt_4o_mini_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: + keyword_extraction = kwargs.pop("keyword_extraction", None) if keyword_extraction: kwargs["response_format"] = GPTKeywordExtractionFormat return await openai_complete_if_cache( @@ -506,6 +508,7 @@ async def gpt_4o_mini_complete( async def nvidia_openai_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: + keyword_extraction = kwargs.pop("keyword_extraction", None) result = await openai_complete_if_cache( "nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k prompt, @@ -522,6 +525,7 @@ async def nvidia_openai_complete( async def azure_openai_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: + keyword_extraction = kwargs.pop("keyword_extraction", None) result = await azure_openai_complete_if_cache( "conversation-4o-mini", prompt, @@ -537,6 +541,7 @@ async def azure_openai_complete( async def bedrock_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: + keyword_extraction = kwargs.pop("keyword_extraction", None) result = await bedrock_complete_if_cache( "anthropic.claude-3-haiku-20240307-v1:0", prompt, @@ -552,6 +557,7 @@ async def bedrock_complete( async def hf_model_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: + keyword_extraction = kwargs.pop("keyword_extraction", None) model_name = kwargs["hashing_kv"].global_config["llm_model_name"] result = await hf_model_if_cache( model_name, @@ -568,6 +574,7 @@ async def hf_model_complete( async def ollama_model_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: + keyword_extraction = kwargs.pop("keyword_extraction", None) if keyword_extraction: kwargs["format"] = "json" model_name = kwargs["hashing_kv"].global_config["llm_model_name"]