Update README.md to include a detailed explanation of the new query_with_separate_keyword_extraction function.
This commit is contained in:
20
README.md
20
README.md
@@ -330,6 +330,26 @@ rag = LightRAG(
|
|||||||
with open("./newText.txt") as f:
|
with open("./newText.txt") as f:
|
||||||
rag.insert(f.read())
|
rag.insert(f.read())
|
||||||
```
|
```
|
||||||
|
### Separate Keyword Extraction
|
||||||
|
We've introduced a new function `query_with_separate_keyword_extraction` to enhance the keyword extraction capabilities. This function separates the keyword extraction process from the user's prompt, focusing solely on the query to improve the relevance of extracted keywords.
|
||||||
|
|
||||||
|
##### How It Works?
|
||||||
|
The function operates by dividing the input into two parts:
|
||||||
|
- `User Query`
|
||||||
|
- `Prompt`
|
||||||
|
|
||||||
|
It then performs keyword extraction exclusively on the `user query`. This separation ensures that the extraction process is focused and relevant, unaffected by any additional language in the `prompt`. It also allows the `prompt` to serve purely for response formatting, maintaining the intent and clarity of the user's original question.
|
||||||
|
|
||||||
|
##### Usage Example
|
||||||
|
This `example` shows how to tailor the function for educational content, focusing on detailed explanations for older students.
|
||||||
|
|
||||||
|
```python
|
||||||
|
rag.query_with_separate_keyword_extraction(
|
||||||
|
query="Explain the law of gravity",
|
||||||
|
prompt="Provide a detailed explanation suitable for high school students studying physics.",
|
||||||
|
param=QueryParam(mode="hybrid")
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
### Using Neo4J for Storage
|
### Using Neo4J for Storage
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user