Update README.md

This commit is contained in:
yangdx
2025-04-20 20:33:01 +08:00
parent 733e307a8d
commit dd4f92dae2
2 changed files with 8 additions and 20 deletions

View File

@@ -636,21 +636,15 @@ rag.insert(["文本1", "文本2",...])
# 带有自定义批量大小配置的批量插入
rag = LightRAG(
...
working_dir=WORKING_DIR,
addon_params={
"insert_batch_size": 4 # 每批处理4个文档
}
max_parallel_insert = 4
)
rag.insert(["文本1", "文本2", "文本3", ...]) # 文档将以4个为一批进行处理
```
`addon_params`中的`insert_batch_size`参数控制插入过程中每批处理的文档数量。这对于以下情况很有用:
- 管理大型文档集合的内存使用
- 优化处理速度
- 提供更好的进度跟踪
- 如果未指定默认值为10
参数 `max_parallel_insert` 用于控制文档索引流水线中并行处理的文档数量。若未指定,默认值为 **2**。建议将该参数设置为 **10 以下**因为性能瓶颈通常出现在大语言模型LLM的处理环节。
</details>
@@ -1115,7 +1109,7 @@ rag.clear_cache(modes=["local"])
| **vector_db_storage_cls_kwargs** | `dict` | 向量数据库的附加参数,如设置节点和关系检索的阈值 | cosine_better_than_threshold: 0.2默认值由环境变量COSINE_THRESHOLD更改 |
| **enable_llm_cache** | `bool` | 如果为`TRUE`将LLM结果存储在缓存中重复的提示返回缓存的响应 | `TRUE` |
| **enable_llm_cache_for_entity_extract** | `bool` | 如果为`TRUE`将实体提取的LLM结果存储在缓存中适合初学者调试应用程序 | `TRUE` |
| **addon_params** | `dict` | 附加参数,例如`{"example_number": 1, "language": "Simplified Chinese", "entity_types": ["organization", "person", "geo", "event"], "insert_batch_size": 10}`:设置示例限制、输出语言和文档处理的批量大小 | `example_number: 所有示例, language: English, insert_batch_size: 10` |
| **addon_params** | `dict` | 附加参数,例如`{"example_number": 1, "language": "Simplified Chinese", "entity_types": ["organization", "person", "geo", "event"]}`:设置示例限制、输出语言和文档处理的批量大小 | `example_number: 所有示例, language: English` |
| **convert_response_to_json_func** | `callable` | 未使用 | `convert_response_to_json` |
| **embedding_cache_config** | `dict` | 问答缓存的配置。包含三个参数:`enabled`:布尔值,启用/禁用缓存查找功能。启用时,系统将在生成新答案之前检查缓存的响应。`similarity_threshold`浮点值0-1相似度阈值。当新问题与缓存问题的相似度超过此阈值时将直接返回缓存的答案而不调用LLM。`use_llm_check`:布尔值,启用/禁用LLM相似度验证。启用时在返回缓存答案之前将使用LLM作为二次检查来验证问题之间的相似度。 | 默认:`{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |