update README.md

This commit is contained in:
LarFii
2024-10-16 15:33:59 +08:00
parent 92c11179fe
commit e152cd20ec

View File

@@ -7,7 +7,6 @@
<p>
<a href='https://lightrag.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
<a href='https://arxiv.org/abs/2410.05779'><img src='https://img.shields.io/badge/arXiv-2410.05779-b31b1b'></a>
<img src="https://badges.pufler.dev/visits/hkuds/lightrag?style=flat-square&logo=github">
<img src='https://img.shields.io/github/stars/hkuds/lightrag?color=green&style=social' />
</p>
<p>
@@ -21,6 +20,7 @@ This repository hosts the code of LightRAG. The structure of this code is based
</div>
## 🎉 News
- [x] [2024.10.16]🎯🎯📢📢LightRAG now supports Ollama models!
- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports Hugging Face models!
## Install
@@ -37,7 +37,7 @@ pip install lightrag-hku
```
## Quick Start
* All the code can be found in the `examples`.
* Set OpenAI API key in environment if using OpenAI models: `export OPENAI_API_KEY="sk-...".`
* Download the demo text "A Christmas Carol by Charles Dickens":
```bash
@@ -84,7 +84,7 @@ from transformers import AutoModel, AutoTokenizer
# Initialize LightRAG with Hugging Face model
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=hf_model_complete, # Use Hugging Face complete model for text generation
llm_model_func=hf_model_complete, # Use Hugging Face model for text generation
llm_model_name='meta-llama/Llama-3.1-8B-Instruct', # Model name from Hugging Face
# Use Hugging Face embedding function
embedding_func=EmbeddingFunc(
@@ -98,6 +98,27 @@ rag = LightRAG(
),
)
```
### Using Ollama Models
If you want to use Ollama models, you only need to set LightRAG as follows:
```python
from lightrag.llm import ollama_model_complete, ollama_embedding
# Initialize LightRAG with Ollama model
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
llm_model_name='your_model_name', # Your model name
# Use Ollama embedding function
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts,
embed_model="nomic-embed-text"
)
),
)
```
### Batch Insert
```python
# Batch Insert: Insert multiple texts at once
@@ -326,8 +347,10 @@ def extract_queries(file_path):
├── examples
├── batch_eval.py
├── generate_query.py
├── lightrag_openai_demo.py
── lightrag_hf_demo.py
├── lightrag_hf_demo.py
── lightrag_ollama_demo.py
├── lightrag_openai_compatible_demo.py
└── lightrag_openai_demo.py
├── lightrag
├── __init__.py
├── base.py