Merge branch 'HKUDS:main' into main
This commit is contained in:
@@ -11,6 +11,7 @@ net = Network(height="100vh", notebook=True)
|
|||||||
# Convert NetworkX graph to Pyvis network
|
# Convert NetworkX graph to Pyvis network
|
||||||
net.from_nx(G)
|
net.from_nx(G)
|
||||||
|
|
||||||
|
|
||||||
# Add colors and title to nodes
|
# Add colors and title to nodes
|
||||||
for node in net.nodes:
|
for node in net.nodes:
|
||||||
node["color"] = "#{:06x}".format(random.randint(0, 0xFFFFFF))
|
node["color"] = "#{:06x}".format(random.randint(0, 0xFFFFFF))
|
||||||
|
164
examples/lightrag_api_ollama_demo.py
Normal file
164
examples/lightrag_api_ollama_demo.py
Normal file
@@ -0,0 +1,164 @@
|
|||||||
|
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||||||
|
from pydantic import BaseModel
|
||||||
|
import os
|
||||||
|
from lightrag import LightRAG, QueryParam
|
||||||
|
from lightrag.llm import ollama_embedding, ollama_model_complete
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
from typing import Optional
|
||||||
|
import asyncio
|
||||||
|
import nest_asyncio
|
||||||
|
import aiofiles
|
||||||
|
|
||||||
|
# Apply nest_asyncio to solve event loop issues
|
||||||
|
nest_asyncio.apply()
|
||||||
|
|
||||||
|
DEFAULT_RAG_DIR = "index_default"
|
||||||
|
app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
||||||
|
|
||||||
|
DEFAULT_INPUT_FILE = "book.txt"
|
||||||
|
INPUT_FILE = os.environ.get("INPUT_FILE", f"{DEFAULT_INPUT_FILE}")
|
||||||
|
print(f"INPUT_FILE: {INPUT_FILE}")
|
||||||
|
|
||||||
|
# Configure working directory
|
||||||
|
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||||
|
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||||
|
|
||||||
|
|
||||||
|
if not os.path.exists(WORKING_DIR):
|
||||||
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=ollama_model_complete,
|
||||||
|
llm_model_name="gemma2:9b",
|
||||||
|
llm_model_max_async=4,
|
||||||
|
llm_model_max_token_size=8192,
|
||||||
|
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 8192}},
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=768,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=lambda texts: ollama_embedding(
|
||||||
|
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||||
|
),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Data models
|
||||||
|
class QueryRequest(BaseModel):
|
||||||
|
query: str
|
||||||
|
mode: str = "hybrid"
|
||||||
|
only_need_context: bool = False
|
||||||
|
|
||||||
|
|
||||||
|
class InsertRequest(BaseModel):
|
||||||
|
text: str
|
||||||
|
|
||||||
|
|
||||||
|
class Response(BaseModel):
|
||||||
|
status: str
|
||||||
|
data: Optional[str] = None
|
||||||
|
message: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
# API routes
|
||||||
|
@app.post("/query", response_model=Response)
|
||||||
|
async def query_endpoint(request: QueryRequest):
|
||||||
|
try:
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
result = await loop.run_in_executor(
|
||||||
|
None,
|
||||||
|
lambda: rag.query(
|
||||||
|
request.query,
|
||||||
|
param=QueryParam(
|
||||||
|
mode=request.mode, only_need_context=request.only_need_context
|
||||||
|
),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
return Response(status="success", data=result)
|
||||||
|
except Exception as e:
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
|
||||||
|
# insert by text
|
||||||
|
@app.post("/insert", response_model=Response)
|
||||||
|
async def insert_endpoint(request: InsertRequest):
|
||||||
|
try:
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
await loop.run_in_executor(None, lambda: rag.insert(request.text))
|
||||||
|
return Response(status="success", message="Text inserted successfully")
|
||||||
|
except Exception as e:
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
|
||||||
|
# insert by file in payload
|
||||||
|
@app.post("/insert_file", response_model=Response)
|
||||||
|
async def insert_file(file: UploadFile = File(...)):
|
||||||
|
try:
|
||||||
|
file_content = await file.read()
|
||||||
|
# Read file content
|
||||||
|
try:
|
||||||
|
content = file_content.decode("utf-8")
|
||||||
|
except UnicodeDecodeError:
|
||||||
|
# If UTF-8 decoding fails, try other encodings
|
||||||
|
content = file_content.decode("gbk")
|
||||||
|
# Insert file content
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
await loop.run_in_executor(None, lambda: rag.insert(content))
|
||||||
|
|
||||||
|
return Response(
|
||||||
|
status="success",
|
||||||
|
message=f"File content from {file.filename} inserted successfully",
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
|
||||||
|
# insert by local default file
|
||||||
|
@app.post("/insert_default_file", response_model=Response)
|
||||||
|
@app.get("/insert_default_file", response_model=Response)
|
||||||
|
async def insert_default_file():
|
||||||
|
try:
|
||||||
|
# Read file content from book.txt
|
||||||
|
async with aiofiles.open(INPUT_FILE, "r", encoding="utf-8") as file:
|
||||||
|
content = await file.read()
|
||||||
|
print(f"read input file {INPUT_FILE} successfully")
|
||||||
|
# Insert file content
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
await loop.run_in_executor(None, lambda: rag.insert(content))
|
||||||
|
|
||||||
|
return Response(
|
||||||
|
status="success",
|
||||||
|
message=f"File content from {INPUT_FILE} inserted successfully",
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/health")
|
||||||
|
async def health_check():
|
||||||
|
return {"status": "healthy"}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
uvicorn.run(app, host="0.0.0.0", port=8020)
|
||||||
|
|
||||||
|
# Usage example
|
||||||
|
# To run the server, use the following command in your terminal:
|
||||||
|
# python lightrag_api_openai_compatible_demo.py
|
||||||
|
|
||||||
|
# Example requests:
|
||||||
|
# 1. Query:
|
||||||
|
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
|
||||||
|
|
||||||
|
# 2. Insert text:
|
||||||
|
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
|
||||||
|
|
||||||
|
# 3. Insert file:
|
||||||
|
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
||||||
|
|
||||||
|
# 4. Health check:
|
||||||
|
# curl -X GET "http://127.0.0.1:8020/health"
|
55
examples/lightrag_openai_compatible_stream_demo.py
Normal file
55
examples/lightrag_openai_compatible_stream_demo.py
Normal file
@@ -0,0 +1,55 @@
|
|||||||
|
import os
|
||||||
|
import inspect
|
||||||
|
from lightrag import LightRAG
|
||||||
|
from lightrag.llm import openai_complete, openai_embedding
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
from lightrag.lightrag import always_get_an_event_loop
|
||||||
|
from lightrag import QueryParam
|
||||||
|
|
||||||
|
# WorkingDir
|
||||||
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
WORKING_DIR = os.path.join(ROOT_DIR, "dickens")
|
||||||
|
if not os.path.exists(WORKING_DIR):
|
||||||
|
os.mkdir(WORKING_DIR)
|
||||||
|
print(f"WorkingDir: {WORKING_DIR}")
|
||||||
|
|
||||||
|
api_key = "empty"
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=openai_complete,
|
||||||
|
llm_model_name="qwen2.5-14b-instruct@4bit",
|
||||||
|
llm_model_max_async=4,
|
||||||
|
llm_model_max_token_size=32768,
|
||||||
|
llm_model_kwargs={"base_url": "http://127.0.0.1:1234/v1", "api_key": api_key},
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=1024,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=lambda texts: openai_embedding(
|
||||||
|
texts=texts,
|
||||||
|
model="text-embedding-bge-m3",
|
||||||
|
base_url="http://127.0.0.1:1234/v1",
|
||||||
|
api_key=api_key,
|
||||||
|
),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||||
|
rag.insert(f.read())
|
||||||
|
|
||||||
|
resp = rag.query(
|
||||||
|
"What are the top themes in this story?",
|
||||||
|
param=QueryParam(mode="hybrid", stream=True),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def print_stream(stream):
|
||||||
|
async for chunk in stream:
|
||||||
|
if chunk:
|
||||||
|
print(chunk, end="", flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
loop = always_get_an_event_loop()
|
||||||
|
if inspect.isasyncgen(resp):
|
||||||
|
loop.run_until_complete(print_stream(resp))
|
||||||
|
else:
|
||||||
|
print(resp)
|
@@ -1,5 +1,5 @@
|
|||||||
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
||||||
|
|
||||||
__version__ = "1.0.4"
|
__version__ = "1.0.5"
|
||||||
__author__ = "Zirui Guo"
|
__author__ = "Zirui Guo"
|
||||||
__url__ = "https://github.com/HKUDS/LightRAG"
|
__url__ = "https://github.com/HKUDS/LightRAG"
|
||||||
|
@@ -40,14 +40,6 @@ from .storage import (
|
|||||||
NetworkXStorage,
|
NetworkXStorage,
|
||||||
)
|
)
|
||||||
|
|
||||||
from .kg.neo4j_impl import Neo4JStorage
|
|
||||||
|
|
||||||
from .kg.oracle_impl import OracleKVStorage, OracleGraphStorage, OracleVectorDBStorage
|
|
||||||
|
|
||||||
from .kg.milvus_impl import MilvusVectorDBStorge
|
|
||||||
|
|
||||||
from .kg.mongo_impl import MongoKVStorage
|
|
||||||
|
|
||||||
# future KG integrations
|
# future KG integrations
|
||||||
|
|
||||||
# from .kg.ArangoDB_impl import (
|
# from .kg.ArangoDB_impl import (
|
||||||
@@ -55,6 +47,30 @@ from .kg.mongo_impl import MongoKVStorage
|
|||||||
# )
|
# )
|
||||||
|
|
||||||
|
|
||||||
|
def lazy_external_import(module_name: str, class_name: str):
|
||||||
|
"""Lazily import an external module and return a class from it."""
|
||||||
|
|
||||||
|
def import_class():
|
||||||
|
import importlib
|
||||||
|
|
||||||
|
# Import the module using importlib
|
||||||
|
module = importlib.import_module(module_name)
|
||||||
|
|
||||||
|
# Get the class from the module
|
||||||
|
return getattr(module, class_name)
|
||||||
|
|
||||||
|
# Return the import_class function itself, not its result
|
||||||
|
return import_class
|
||||||
|
|
||||||
|
|
||||||
|
Neo4JStorage = lazy_external_import(".kg.neo4j_impl", "Neo4JStorage")
|
||||||
|
OracleKVStorage = lazy_external_import(".kg.oracle_impl", "OracleKVStorage")
|
||||||
|
OracleGraphStorage = lazy_external_import(".kg.oracle_impl", "OracleGraphStorage")
|
||||||
|
OracleVectorDBStorage = lazy_external_import(".kg.oracle_impl", "OracleVectorDBStorage")
|
||||||
|
MilvusVectorDBStorge = lazy_external_import(".kg.milvus_impl", "MilvusVectorDBStorge")
|
||||||
|
MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
|
||||||
|
|
||||||
|
|
||||||
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||||
"""
|
"""
|
||||||
Ensure that there is always an event loop available.
|
Ensure that there is always an event loop available.
|
||||||
@@ -68,7 +84,7 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
|||||||
try:
|
try:
|
||||||
# Try to get the current event loop
|
# Try to get the current event loop
|
||||||
current_loop = asyncio.get_event_loop()
|
current_loop = asyncio.get_event_loop()
|
||||||
if current_loop._closed:
|
if current_loop.is_closed():
|
||||||
raise RuntimeError("Event loop is closed.")
|
raise RuntimeError("Event loop is closed.")
|
||||||
return current_loop
|
return current_loop
|
||||||
|
|
||||||
|
@@ -76,10 +76,23 @@ async def openai_complete_if_cache(
|
|||||||
response = await openai_async_client.chat.completions.create(
|
response = await openai_async_client.chat.completions.create(
|
||||||
model=model, messages=messages, **kwargs
|
model=model, messages=messages, **kwargs
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if hasattr(response, "__aiter__"):
|
||||||
|
|
||||||
|
async def inner():
|
||||||
|
async for chunk in response:
|
||||||
|
content = chunk.choices[0].delta.content
|
||||||
|
if content is None:
|
||||||
|
continue
|
||||||
|
if r"\u" in content:
|
||||||
|
content = content.encode("utf-8").decode("unicode_escape")
|
||||||
|
yield content
|
||||||
|
|
||||||
|
return inner()
|
||||||
|
else:
|
||||||
content = response.choices[0].message.content
|
content = response.choices[0].message.content
|
||||||
if r"\u" in content:
|
if r"\u" in content:
|
||||||
content = content.encode("utf-8").decode("unicode_escape")
|
content = content.encode("utf-8").decode("unicode_escape")
|
||||||
|
|
||||||
return content
|
return content
|
||||||
|
|
||||||
|
|
||||||
@@ -306,7 +319,7 @@ async def ollama_model_if_cache(
|
|||||||
|
|
||||||
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
||||||
if stream:
|
if stream:
|
||||||
""" cannot cache stream response """
|
"""cannot cache stream response"""
|
||||||
|
|
||||||
async def inner():
|
async def inner():
|
||||||
async for chunk in response:
|
async for chunk in response:
|
||||||
@@ -447,6 +460,22 @@ class GPTKeywordExtractionFormat(BaseModel):
|
|||||||
low_level_keywords: List[str]
|
low_level_keywords: List[str]
|
||||||
|
|
||||||
|
|
||||||
|
async def openai_complete(
|
||||||
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||||
|
) -> Union[str, AsyncIterator[str]]:
|
||||||
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||||
|
if keyword_extraction:
|
||||||
|
kwargs["response_format"] = "json"
|
||||||
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||||
|
return await openai_complete_if_cache(
|
||||||
|
model_name,
|
||||||
|
prompt,
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
history_messages=history_messages,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
async def gpt_4o_complete(
|
async def gpt_4o_complete(
|
||||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
@@ -890,6 +919,8 @@ class MultiModel:
|
|||||||
self, prompt, system_prompt=None, history_messages=[], **kwargs
|
self, prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
kwargs.pop("model", None) # stop from overwriting the custom model name
|
kwargs.pop("model", None) # stop from overwriting the custom model name
|
||||||
|
kwargs.pop("keyword_extraction", None)
|
||||||
|
kwargs.pop("mode", None)
|
||||||
next_model = self._next_model()
|
next_model = self._next_model()
|
||||||
args = dict(
|
args = dict(
|
||||||
prompt=prompt,
|
prompt=prompt,
|
||||||
|
@@ -222,7 +222,7 @@ async def _merge_edges_then_upsert(
|
|||||||
},
|
},
|
||||||
)
|
)
|
||||||
description = await _handle_entity_relation_summary(
|
description = await _handle_entity_relation_summary(
|
||||||
(src_id, tgt_id), description, global_config
|
f"({src_id}, {tgt_id})", description, global_config
|
||||||
)
|
)
|
||||||
await knowledge_graph_inst.upsert_edge(
|
await knowledge_graph_inst.upsert_edge(
|
||||||
src_id,
|
src_id,
|
||||||
@@ -572,7 +572,6 @@ async def kg_query(
|
|||||||
mode=query_param.mode,
|
mode=query_param.mode,
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
return response
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
@@ -488,7 +488,7 @@ class CacheData:
|
|||||||
|
|
||||||
|
|
||||||
async def save_to_cache(hashing_kv, cache_data: CacheData):
|
async def save_to_cache(hashing_kv, cache_data: CacheData):
|
||||||
if hashing_kv is None:
|
if hashing_kv is None or hasattr(cache_data.content, "__aiter__"):
|
||||||
return
|
return
|
||||||
|
|
||||||
mode_cache = await hashing_kv.get_by_id(cache_data.mode) or {}
|
mode_cache = await hashing_kv.get_by_id(cache_data.mode) or {}
|
||||||
|
Reference in New Issue
Block a user