Merge branch 'HKUDS:main' into main

This commit is contained in:
Magic_yuan
2024-12-09 18:17:01 +08:00
committed by GitHub
8 changed files with 284 additions and 18 deletions

View File

@@ -11,6 +11,7 @@ net = Network(height="100vh", notebook=True)
# Convert NetworkX graph to Pyvis network
net.from_nx(G)
# Add colors and title to nodes
for node in net.nodes:
node["color"] = "#{:06x}".format(random.randint(0, 0xFFFFFF))

View File

@@ -0,0 +1,164 @@
from fastapi import FastAPI, HTTPException, File, UploadFile
from pydantic import BaseModel
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_embedding, ollama_model_complete
from lightrag.utils import EmbeddingFunc
from typing import Optional
import asyncio
import nest_asyncio
import aiofiles
# Apply nest_asyncio to solve event loop issues
nest_asyncio.apply()
DEFAULT_RAG_DIR = "index_default"
app = FastAPI(title="LightRAG API", description="API for RAG operations")
DEFAULT_INPUT_FILE = "book.txt"
INPUT_FILE = os.environ.get("INPUT_FILE", f"{DEFAULT_INPUT_FILE}")
print(f"INPUT_FILE: {INPUT_FILE}")
# Configure working directory
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
print(f"WORKING_DIR: {WORKING_DIR}")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name="gemma2:9b",
llm_model_max_async=4,
llm_model_max_token_size=8192,
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 8192}},
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
),
),
)
# Data models
class QueryRequest(BaseModel):
query: str
mode: str = "hybrid"
only_need_context: bool = False
class InsertRequest(BaseModel):
text: str
class Response(BaseModel):
status: str
data: Optional[str] = None
message: Optional[str] = None
# API routes
@app.post("/query", response_model=Response)
async def query_endpoint(request: QueryRequest):
try:
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(
None,
lambda: rag.query(
request.query,
param=QueryParam(
mode=request.mode, only_need_context=request.only_need_context
),
),
)
return Response(status="success", data=result)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# insert by text
@app.post("/insert", response_model=Response)
async def insert_endpoint(request: InsertRequest):
try:
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, lambda: rag.insert(request.text))
return Response(status="success", message="Text inserted successfully")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# insert by file in payload
@app.post("/insert_file", response_model=Response)
async def insert_file(file: UploadFile = File(...)):
try:
file_content = await file.read()
# Read file content
try:
content = file_content.decode("utf-8")
except UnicodeDecodeError:
# If UTF-8 decoding fails, try other encodings
content = file_content.decode("gbk")
# Insert file content
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, lambda: rag.insert(content))
return Response(
status="success",
message=f"File content from {file.filename} inserted successfully",
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# insert by local default file
@app.post("/insert_default_file", response_model=Response)
@app.get("/insert_default_file", response_model=Response)
async def insert_default_file():
try:
# Read file content from book.txt
async with aiofiles.open(INPUT_FILE, "r", encoding="utf-8") as file:
content = await file.read()
print(f"read input file {INPUT_FILE} successfully")
# Insert file content
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, lambda: rag.insert(content))
return Response(
status="success",
message=f"File content from {INPUT_FILE} inserted successfully",
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
return {"status": "healthy"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8020)
# Usage example
# To run the server, use the following command in your terminal:
# python lightrag_api_openai_compatible_demo.py
# Example requests:
# 1. Query:
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
# 2. Insert text:
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
# 3. Insert file:
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
# 4. Health check:
# curl -X GET "http://127.0.0.1:8020/health"

View File

@@ -0,0 +1,55 @@
import os
import inspect
from lightrag import LightRAG
from lightrag.llm import openai_complete, openai_embedding
from lightrag.utils import EmbeddingFunc
from lightrag.lightrag import always_get_an_event_loop
from lightrag import QueryParam
# WorkingDir
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
WORKING_DIR = os.path.join(ROOT_DIR, "dickens")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
print(f"WorkingDir: {WORKING_DIR}")
api_key = "empty"
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=openai_complete,
llm_model_name="qwen2.5-14b-instruct@4bit",
llm_model_max_async=4,
llm_model_max_token_size=32768,
llm_model_kwargs={"base_url": "http://127.0.0.1:1234/v1", "api_key": api_key},
embedding_func=EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=lambda texts: openai_embedding(
texts=texts,
model="text-embedding-bge-m3",
base_url="http://127.0.0.1:1234/v1",
api_key=api_key,
),
),
)
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
resp = rag.query(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid", stream=True),
)
async def print_stream(stream):
async for chunk in stream:
if chunk:
print(chunk, end="", flush=True)
loop = always_get_an_event_loop()
if inspect.isasyncgen(resp):
loop.run_until_complete(print_stream(resp))
else:
print(resp)

View File

@@ -1,5 +1,5 @@
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
__version__ = "1.0.4"
__version__ = "1.0.5"
__author__ = "Zirui Guo"
__url__ = "https://github.com/HKUDS/LightRAG"

View File

@@ -40,14 +40,6 @@ from .storage import (
NetworkXStorage,
)
from .kg.neo4j_impl import Neo4JStorage
from .kg.oracle_impl import OracleKVStorage, OracleGraphStorage, OracleVectorDBStorage
from .kg.milvus_impl import MilvusVectorDBStorge
from .kg.mongo_impl import MongoKVStorage
# future KG integrations
# from .kg.ArangoDB_impl import (
@@ -55,6 +47,30 @@ from .kg.mongo_impl import MongoKVStorage
# )
def lazy_external_import(module_name: str, class_name: str):
"""Lazily import an external module and return a class from it."""
def import_class():
import importlib
# Import the module using importlib
module = importlib.import_module(module_name)
# Get the class from the module
return getattr(module, class_name)
# Return the import_class function itself, not its result
return import_class
Neo4JStorage = lazy_external_import(".kg.neo4j_impl", "Neo4JStorage")
OracleKVStorage = lazy_external_import(".kg.oracle_impl", "OracleKVStorage")
OracleGraphStorage = lazy_external_import(".kg.oracle_impl", "OracleGraphStorage")
OracleVectorDBStorage = lazy_external_import(".kg.oracle_impl", "OracleVectorDBStorage")
MilvusVectorDBStorge = lazy_external_import(".kg.milvus_impl", "MilvusVectorDBStorge")
MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
"""
Ensure that there is always an event loop available.
@@ -68,7 +84,7 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
try:
# Try to get the current event loop
current_loop = asyncio.get_event_loop()
if current_loop._closed:
if current_loop.is_closed():
raise RuntimeError("Event loop is closed.")
return current_loop

View File

@@ -76,10 +76,23 @@ async def openai_complete_if_cache(
response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
if hasattr(response, "__aiter__"):
async def inner():
async for chunk in response:
content = chunk.choices[0].delta.content
if content is None:
continue
if r"\u" in content:
content = content.encode("utf-8").decode("unicode_escape")
yield content
return inner()
else:
content = response.choices[0].message.content
if r"\u" in content:
content = content.encode("utf-8").decode("unicode_escape")
return content
@@ -447,6 +460,22 @@ class GPTKeywordExtractionFormat(BaseModel):
low_level_keywords: List[str]
async def openai_complete(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> Union[str, AsyncIterator[str]]:
keyword_extraction = kwargs.pop("keyword_extraction", None)
if keyword_extraction:
kwargs["response_format"] = "json"
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
return await openai_complete_if_cache(
model_name,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
async def gpt_4o_complete(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
@@ -890,6 +919,8 @@ class MultiModel:
self, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
kwargs.pop("model", None) # stop from overwriting the custom model name
kwargs.pop("keyword_extraction", None)
kwargs.pop("mode", None)
next_model = self._next_model()
args = dict(
prompt=prompt,

View File

@@ -222,7 +222,7 @@ async def _merge_edges_then_upsert(
},
)
description = await _handle_entity_relation_summary(
(src_id, tgt_id), description, global_config
f"({src_id}, {tgt_id})", description, global_config
)
await knowledge_graph_inst.upsert_edge(
src_id,
@@ -572,7 +572,6 @@ async def kg_query(
mode=query_param.mode,
),
)
return response

View File

@@ -488,7 +488,7 @@ class CacheData:
async def save_to_cache(hashing_kv, cache_data: CacheData):
if hashing_kv is None:
if hashing_kv is None or hasattr(cache_data.content, "__aiter__"):
return
mode_cache = await hashing_kv.get_by_id(cache_data.mode) or {}