Add huggingface model support

This commit is contained in:
LarFii
2024-10-15 19:40:08 +08:00
parent af997c02c2
commit ea126a7108
11 changed files with 100 additions and 56 deletions

View File

@@ -1,18 +0,0 @@
import os
import sys
from lightrag import LightRAG
# os.environ["OPENAI_API_KEY"] = ""
WORKING_DIR = ""
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(working_dir=WORKING_DIR)
with open('./text.txt', 'r') as f:
text = f.read()
rag.insert(text)

View File

@@ -0,0 +1,36 @@
import os
import sys
from lightrag import LightRAG, QueryParam
from lightrag.llm import hf_model_complete, hf_embedding
from transformers import AutoModel,AutoTokenizer
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=hf_model_complete,
llm_model_name='meta-llama/Llama-3.1-8B-Instruct',
embedding_func=hf_embedding,
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
)
with open("./book.txt") as f:
rag.insert(f.read())
# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))

View File

@@ -0,0 +1,33 @@
import os
import sys
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
from transformers import AutoModel,AutoTokenizer
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_complete
# llm_model_func=gpt_4o_mini_complete
)
with open("./book.txt") as f:
rag.insert(f.read())
# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))

View File

@@ -1,16 +0,0 @@
import os
import sys
from lightrag import LightRAG, QueryParam
# os.environ["OPENAI_API_KEY"] = ""
WORKING_DIR = ""
rag = LightRAG(working_dir=WORKING_DIR)
mode = 'global'
query_param = QueryParam(mode=mode)
result = rag.query("", param=query_param)
print(result)