Add huggingface model support
This commit is contained in:
@@ -3,7 +3,8 @@ import os
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from datetime import datetime
|
||||
from functools import partial
|
||||
from typing import Type, cast
|
||||
from typing import Type, cast, Any
|
||||
from transformers import AutoModel,AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
from .llm import gpt_4o_complete, gpt_4o_mini_complete, openai_embedding,hf_model_complete,hf_embedding
|
||||
from .operate import (
|
||||
@@ -11,7 +12,7 @@ from .operate import (
|
||||
extract_entities,
|
||||
local_query,
|
||||
global_query,
|
||||
hybird_query,
|
||||
hybrid_query,
|
||||
naive_query,
|
||||
)
|
||||
|
||||
@@ -38,15 +39,14 @@ from .base import (
|
||||
|
||||
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||
try:
|
||||
# If there is already an event loop, use it.
|
||||
loop = asyncio.get_event_loop()
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
# If in a sub-thread, create a new event loop.
|
||||
logger.info("Creating a new event loop in a sub-thread.")
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
return loop
|
||||
|
||||
|
||||
@dataclass
|
||||
class LightRAG:
|
||||
working_dir: str = field(
|
||||
@@ -77,6 +77,9 @@ class LightRAG:
|
||||
)
|
||||
|
||||
# text embedding
|
||||
tokenizer: Any = None
|
||||
embed_model: Any = None
|
||||
|
||||
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
||||
embedding_func: EmbeddingFunc = field(default_factory=lambda:openai_embedding)#
|
||||
embedding_batch_num: int = 32
|
||||
@@ -100,6 +103,13 @@ class LightRAG:
|
||||
convert_response_to_json_func: callable = convert_response_to_json
|
||||
|
||||
def __post_init__(self):
|
||||
if callable(self.embedding_func) and self.embedding_func.__name__ == 'hf_embedding':
|
||||
if self.tokenizer is None:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
||||
if self.embed_model is None:
|
||||
self.embed_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
||||
|
||||
|
||||
log_file = os.path.join(self.working_dir, "lightrag.log")
|
||||
set_logger(log_file)
|
||||
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
||||
@@ -130,8 +140,11 @@ class LightRAG:
|
||||
namespace="chunk_entity_relation", global_config=asdict(self)
|
||||
)
|
||||
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
||||
self.embedding_func
|
||||
lambda texts: self.embedding_func(texts, self.tokenizer, self.embed_model)
|
||||
if callable(self.embedding_func) and self.embedding_func.__name__ == 'hf_embedding'
|
||||
else self.embedding_func(texts)
|
||||
)
|
||||
|
||||
self.entities_vdb = (
|
||||
self.vector_db_storage_cls(
|
||||
namespace="entities",
|
||||
@@ -267,8 +280,8 @@ class LightRAG:
|
||||
param,
|
||||
asdict(self),
|
||||
)
|
||||
elif param.mode == "hybird":
|
||||
response = await hybird_query(
|
||||
elif param.mode == "hybrid":
|
||||
response = await hybrid_query(
|
||||
query,
|
||||
self.chunk_entity_relation_graph,
|
||||
self.entities_vdb,
|
||||
|
Reference in New Issue
Block a user