Merge pull request #1167 from omdivyatej/om-pr
Feature: Dynamic LLM Selection via QueryParam for Optimized Performance
This commit is contained in:
@@ -10,6 +10,7 @@ from typing import (
|
||||
Literal,
|
||||
TypedDict,
|
||||
TypeVar,
|
||||
Callable,
|
||||
)
|
||||
import numpy as np
|
||||
from .utils import EmbeddingFunc
|
||||
@@ -84,6 +85,12 @@ class QueryParam:
|
||||
ids: list[str] | None = None
|
||||
"""List of ids to filter the results."""
|
||||
|
||||
model_func: Callable[..., object] | None = None
|
||||
"""Optional override for the LLM model function to use for this specific query.
|
||||
If provided, this will be used instead of the global model function.
|
||||
This allows using different models for different query modes.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class StorageNameSpace(ABC):
|
||||
|
@@ -1330,11 +1330,15 @@ class LightRAG:
|
||||
Args:
|
||||
query (str): The query to be executed.
|
||||
param (QueryParam): Configuration parameters for query execution.
|
||||
If param.model_func is provided, it will be used instead of the global model.
|
||||
prompt (Optional[str]): Custom prompts for fine-tuned control over the system's behavior. Defaults to None, which uses PROMPTS["rag_response"].
|
||||
|
||||
Returns:
|
||||
str: The result of the query execution.
|
||||
"""
|
||||
# If a custom model is provided in param, temporarily update global config
|
||||
global_config = asdict(self)
|
||||
|
||||
if param.mode in ["local", "global", "hybrid"]:
|
||||
response = await kg_query(
|
||||
query.strip(),
|
||||
@@ -1343,7 +1347,7 @@ class LightRAG:
|
||||
self.relationships_vdb,
|
||||
self.text_chunks,
|
||||
param,
|
||||
asdict(self),
|
||||
global_config,
|
||||
hashing_kv=self.llm_response_cache, # Directly use llm_response_cache
|
||||
system_prompt=system_prompt,
|
||||
)
|
||||
@@ -1353,7 +1357,7 @@ class LightRAG:
|
||||
self.chunks_vdb,
|
||||
self.text_chunks,
|
||||
param,
|
||||
asdict(self),
|
||||
global_config,
|
||||
hashing_kv=self.llm_response_cache, # Directly use llm_response_cache
|
||||
system_prompt=system_prompt,
|
||||
)
|
||||
@@ -1366,7 +1370,7 @@ class LightRAG:
|
||||
self.chunks_vdb,
|
||||
self.text_chunks,
|
||||
param,
|
||||
asdict(self),
|
||||
global_config,
|
||||
hashing_kv=self.llm_response_cache, # Directly use llm_response_cache
|
||||
system_prompt=system_prompt,
|
||||
)
|
||||
|
@@ -705,7 +705,11 @@ async def kg_query(
|
||||
system_prompt: str | None = None,
|
||||
) -> str | AsyncIterator[str]:
|
||||
# Handle cache
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
use_model_func = (
|
||||
query_param.model_func
|
||||
if query_param.model_func
|
||||
else global_config["llm_model_func"]
|
||||
)
|
||||
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
||||
cached_response, quantized, min_val, max_val = await handle_cache(
|
||||
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
||||
@@ -866,7 +870,9 @@ async def extract_keywords_only(
|
||||
logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
||||
|
||||
# 5. Call the LLM for keyword extraction
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
use_model_func = (
|
||||
param.model_func if param.model_func else global_config["llm_model_func"]
|
||||
)
|
||||
result = await use_model_func(kw_prompt, keyword_extraction=True)
|
||||
|
||||
# 6. Parse out JSON from the LLM response
|
||||
@@ -926,7 +932,11 @@ async def mix_kg_vector_query(
|
||||
3. Combining both results for comprehensive answer generation
|
||||
"""
|
||||
# 1. Cache handling
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
use_model_func = (
|
||||
query_param.model_func
|
||||
if query_param.model_func
|
||||
else global_config["llm_model_func"]
|
||||
)
|
||||
args_hash = compute_args_hash("mix", query, cache_type="query")
|
||||
cached_response, quantized, min_val, max_val = await handle_cache(
|
||||
hashing_kv, args_hash, query, "mix", cache_type="query"
|
||||
@@ -1731,7 +1741,11 @@ async def naive_query(
|
||||
system_prompt: str | None = None,
|
||||
) -> str | AsyncIterator[str]:
|
||||
# Handle cache
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
use_model_func = (
|
||||
query_param.model_func
|
||||
if query_param.model_func
|
||||
else global_config["llm_model_func"]
|
||||
)
|
||||
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
||||
cached_response, quantized, min_val, max_val = await handle_cache(
|
||||
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
||||
@@ -1850,7 +1864,11 @@ async def kg_query_with_keywords(
|
||||
# ---------------------------
|
||||
# 1) Handle potential cache for query results
|
||||
# ---------------------------
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
use_model_func = (
|
||||
query_param.model_func
|
||||
if query_param.model_func
|
||||
else global_config["llm_model_func"]
|
||||
)
|
||||
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
||||
cached_response, quantized, min_val, max_val = await handle_cache(
|
||||
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
||||
|
Reference in New Issue
Block a user