Merge branch 'HKUDS:main' into main
This commit is contained in:
@@ -70,7 +70,7 @@ def main():
|
||||
),
|
||||
vector_storage="FaissVectorDBStorage",
|
||||
vector_db_storage_cls_kwargs={
|
||||
"cosine_better_than_threshold": 0.3 # Your desired threshold
|
||||
"cosine_better_than_threshold": 0.2 # Your desired threshold
|
||||
},
|
||||
)
|
||||
|
||||
|
@@ -1,5 +1,5 @@
|
||||
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
||||
|
||||
__version__ = "1.1.7"
|
||||
__version__ = "1.1.11"
|
||||
__author__ = "Zirui Guo"
|
||||
__url__ = "https://github.com/HKUDS/LightRAG"
|
||||
|
@@ -1748,7 +1748,16 @@ def create_app(args):
|
||||
trace_exception(e)
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
# query all graph labels
|
||||
@app.get("/graph/label/list")
|
||||
async def get_graph_labels():
|
||||
return await rag.get_graph_labels()
|
||||
|
||||
# query all graph
|
||||
@app.get("/graphs")
|
||||
async def get_knowledge_graph(label: str):
|
||||
return await rag.get_knowledge_graph(nodel_label=label, max_depth=100)
|
||||
|
||||
# Add Ollama API routes
|
||||
ollama_api = OllamaAPI(rag, top_k=args.top_k)
|
||||
app.include_router(ollama_api.router, prefix="/api")
|
||||
|
@@ -13,6 +13,7 @@ from typing import (
|
||||
)
|
||||
import numpy as np
|
||||
from .utils import EmbeddingFunc
|
||||
from .types import KnowledgeGraph
|
||||
|
||||
load_dotenv()
|
||||
|
||||
@@ -197,6 +198,16 @@ class BaseGraphStorage(StorageNameSpace, ABC):
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
"""Get all labels in the graph."""
|
||||
|
||||
@abstractmethod
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
"""Get a knowledge graph of a node."""
|
||||
|
||||
@abstractmethod
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
"""Retrieve a subgraph of the knowledge graph starting from a given node."""
|
||||
|
||||
|
||||
class DocStatus(str, Enum):
|
||||
"""Document processing status"""
|
||||
|
@@ -8,6 +8,7 @@ from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Union, final
|
||||
import numpy as np
|
||||
import pipmaster as pm
|
||||
from lightrag.types import KnowledgeGraph
|
||||
|
||||
from tenacity import (
|
||||
retry,
|
||||
@@ -59,6 +60,10 @@ class AGEQueryException(Exception):
|
||||
@final
|
||||
@dataclass
|
||||
class AGEStorage(BaseGraphStorage):
|
||||
@staticmethod
|
||||
def load_nx_graph(file_name):
|
||||
print("no preloading of graph with AGE in production")
|
||||
|
||||
def __init__(self, namespace, global_config, embedding_func):
|
||||
super().__init__(
|
||||
namespace=namespace,
|
||||
@@ -615,6 +620,14 @@ class AGEStorage(BaseGraphStorage):
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
|
||||
async def index_done_callback(self) -> None:
|
||||
# AGES handles persistence automatically
|
||||
pass
|
||||
|
@@ -16,6 +16,7 @@ from tenacity import (
|
||||
wait_exponential,
|
||||
)
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.utils import logger
|
||||
|
||||
from ..base import BaseGraphStorage
|
||||
@@ -401,3 +402,11 @@ class GremlinStorage(BaseGraphStorage):
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
|
@@ -16,6 +16,7 @@ from ..base import (
|
||||
)
|
||||
from ..namespace import NameSpace, is_namespace
|
||||
from ..utils import logger
|
||||
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
import pipmaster as pm
|
||||
|
||||
if not pm.is_installed("pymongo"):
|
||||
@@ -598,6 +599,197 @@ class MongoGraphStorage(BaseGraphStorage):
|
||||
# -------------------------------------------------------------------------
|
||||
# QUERY
|
||||
# -------------------------------------------------------------------------
|
||||
#
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
"""
|
||||
Get all existing node _id in the database
|
||||
Returns:
|
||||
[id1, id2, ...] # Alphabetically sorted id list
|
||||
"""
|
||||
# Use MongoDB's distinct and aggregation to get all unique labels
|
||||
pipeline = [
|
||||
{"$group": {"_id": "$_id"}}, # Group by _id
|
||||
{"$sort": {"_id": 1}}, # Sort alphabetically
|
||||
]
|
||||
|
||||
cursor = self.collection.aggregate(pipeline)
|
||||
labels = []
|
||||
async for doc in cursor:
|
||||
labels.append(doc["_id"])
|
||||
return labels
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
"""
|
||||
Get complete connected subgraph for specified node (including the starting node itself)
|
||||
|
||||
Args:
|
||||
node_label: Label of the nodes to start from
|
||||
max_depth: Maximum depth of traversal (default: 5)
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph object containing nodes and edges of the subgraph
|
||||
"""
|
||||
label = node_label
|
||||
result = KnowledgeGraph()
|
||||
seen_nodes = set()
|
||||
seen_edges = set()
|
||||
|
||||
try:
|
||||
if label == "*":
|
||||
# Get all nodes and edges
|
||||
async for node_doc in self.collection.find({}):
|
||||
node_id = str(node_doc["_id"])
|
||||
if node_id not in seen_nodes:
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=node_id,
|
||||
labels=[node_doc.get("_id")],
|
||||
properties={
|
||||
k: v
|
||||
for k, v in node_doc.items()
|
||||
if k not in ["_id", "edges"]
|
||||
},
|
||||
)
|
||||
)
|
||||
seen_nodes.add(node_id)
|
||||
|
||||
# Process edges
|
||||
for edge in node_doc.get("edges", []):
|
||||
edge_id = f"{node_id}-{edge['target']}"
|
||||
if edge_id not in seen_edges:
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type=edge.get("relation", ""),
|
||||
source=node_id,
|
||||
target=edge["target"],
|
||||
properties={
|
||||
k: v
|
||||
for k, v in edge.items()
|
||||
if k not in ["target", "relation"]
|
||||
},
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
else:
|
||||
# Verify if starting node exists
|
||||
start_nodes = self.collection.find({"_id": label})
|
||||
start_nodes_exist = await start_nodes.to_list(length=1)
|
||||
if not start_nodes_exist:
|
||||
logger.warning(f"Starting node with label {label} does not exist!")
|
||||
return result
|
||||
|
||||
# Use $graphLookup for traversal
|
||||
pipeline = [
|
||||
{
|
||||
"$match": {"_id": label}
|
||||
}, # Start with nodes having the specified label
|
||||
{
|
||||
"$graphLookup": {
|
||||
"from": self._collection_name,
|
||||
"startWith": "$edges.target",
|
||||
"connectFromField": "edges.target",
|
||||
"connectToField": "_id",
|
||||
"maxDepth": max_depth,
|
||||
"depthField": "depth",
|
||||
"as": "connected_nodes",
|
||||
}
|
||||
},
|
||||
]
|
||||
|
||||
async for doc in self.collection.aggregate(pipeline):
|
||||
# Add the start node
|
||||
node_id = str(doc["_id"])
|
||||
if node_id not in seen_nodes:
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=node_id,
|
||||
labels=[
|
||||
doc.get(
|
||||
"_id",
|
||||
)
|
||||
],
|
||||
properties={
|
||||
k: v
|
||||
for k, v in doc.items()
|
||||
if k
|
||||
not in [
|
||||
"_id",
|
||||
"edges",
|
||||
"connected_nodes",
|
||||
"depth",
|
||||
]
|
||||
},
|
||||
)
|
||||
)
|
||||
seen_nodes.add(node_id)
|
||||
|
||||
# Add edges from start node
|
||||
for edge in doc.get("edges", []):
|
||||
edge_id = f"{node_id}-{edge['target']}"
|
||||
if edge_id not in seen_edges:
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type=edge.get("relation", ""),
|
||||
source=node_id,
|
||||
target=edge["target"],
|
||||
properties={
|
||||
k: v
|
||||
for k, v in edge.items()
|
||||
if k not in ["target", "relation"]
|
||||
},
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
|
||||
# Add connected nodes and their edges
|
||||
for connected in doc.get("connected_nodes", []):
|
||||
node_id = str(connected["_id"])
|
||||
if node_id not in seen_nodes:
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=node_id,
|
||||
labels=[connected.get("_id")],
|
||||
properties={
|
||||
k: v
|
||||
for k, v in connected.items()
|
||||
if k not in ["_id", "edges", "depth"]
|
||||
},
|
||||
)
|
||||
)
|
||||
seen_nodes.add(node_id)
|
||||
|
||||
# Add edges from connected nodes
|
||||
for edge in connected.get("edges", []):
|
||||
edge_id = f"{node_id}-{edge['target']}"
|
||||
if edge_id not in seen_edges:
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type=edge.get("relation", ""),
|
||||
source=node_id,
|
||||
target=edge["target"],
|
||||
properties={
|
||||
k: v
|
||||
for k, v in edge.items()
|
||||
if k not in ["target", "relation"]
|
||||
},
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
|
||||
logger.info(
|
||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||
)
|
||||
|
||||
except PyMongoError as e:
|
||||
logger.error(f"MongoDB query failed: {str(e)}")
|
||||
|
||||
return result
|
||||
|
||||
async def index_done_callback(self) -> None:
|
||||
# Mongo handles persistence automatically
|
||||
|
@@ -17,6 +17,7 @@ from tenacity import (
|
||||
|
||||
from ..utils import logger
|
||||
from ..base import BaseGraphStorage
|
||||
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
import pipmaster as pm
|
||||
|
||||
if not pm.is_installed("neo4j"):
|
||||
@@ -468,6 +469,99 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
async def _node2vec_embed(self):
|
||||
print("Implemented but never called.")
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
"""
|
||||
Get complete connected subgraph for specified node (including the starting node itself)
|
||||
|
||||
Key fixes:
|
||||
1. Include the starting node itself
|
||||
2. Handle multi-label nodes
|
||||
3. Clarify relationship directions
|
||||
4. Add depth control
|
||||
"""
|
||||
label = node_label.strip('"')
|
||||
result = KnowledgeGraph()
|
||||
seen_nodes = set()
|
||||
seen_edges = set()
|
||||
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
try:
|
||||
main_query = ""
|
||||
if label == "*":
|
||||
main_query = """
|
||||
MATCH (n)
|
||||
WITH collect(DISTINCT n) AS nodes
|
||||
MATCH ()-[r]-()
|
||||
RETURN nodes, collect(DISTINCT r) AS relationships;
|
||||
"""
|
||||
else:
|
||||
# Critical debug step: first verify if starting node exists
|
||||
validate_query = f"MATCH (n:`{label}`) RETURN n LIMIT 1"
|
||||
validate_result = await session.run(validate_query)
|
||||
if not await validate_result.single():
|
||||
logger.warning(f"Starting node {label} does not exist!")
|
||||
return result
|
||||
|
||||
# Optimized query (including direction handling and self-loops)
|
||||
main_query = f"""
|
||||
MATCH (start:`{label}`)
|
||||
WITH start
|
||||
CALL apoc.path.subgraphAll(start, {{
|
||||
relationshipFilter: '>',
|
||||
minLevel: 0,
|
||||
maxLevel: {max_depth},
|
||||
bfs: true
|
||||
}})
|
||||
YIELD nodes, relationships
|
||||
RETURN nodes, relationships
|
||||
"""
|
||||
result_set = await session.run(main_query)
|
||||
record = await result_set.single()
|
||||
|
||||
if record:
|
||||
# Handle nodes (compatible with multi-label cases)
|
||||
for node in record["nodes"]:
|
||||
# Use node ID + label combination as unique identifier
|
||||
node_id = node.id
|
||||
if node_id not in seen_nodes:
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=f"{node_id}",
|
||||
labels=list(node.labels),
|
||||
properties=dict(node),
|
||||
)
|
||||
)
|
||||
seen_nodes.add(node_id)
|
||||
|
||||
# Handle relationships (including direction information)
|
||||
for rel in record["relationships"]:
|
||||
edge_id = rel.id
|
||||
if edge_id not in seen_edges:
|
||||
start = rel.start_node
|
||||
end = rel.end_node
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=f"{edge_id}",
|
||||
type=rel.type,
|
||||
source=f"{start.id}",
|
||||
target=f"{end.id}",
|
||||
properties=dict(rel),
|
||||
)
|
||||
)
|
||||
seen_edges.add(edge_id)
|
||||
|
||||
logger.info(
|
||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||
)
|
||||
|
||||
except neo4jExceptions.ClientError as e:
|
||||
logger.error(f"APOC query failed: {str(e)}")
|
||||
return await self._robust_fallback(label, max_depth)
|
||||
|
||||
return result
|
||||
|
||||
async def _robust_fallback(
|
||||
self, label: str, max_depth: int
|
||||
) -> Dict[str, List[Dict]]:
|
||||
@@ -534,6 +628,31 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
await traverse(label, 0)
|
||||
return result
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
"""
|
||||
Get all existing node labels in the database
|
||||
Returns:
|
||||
["Person", "Company", ...] # Alphabetically sorted label list
|
||||
"""
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
# Method 1: Direct metadata query (Available for Neo4j 4.3+)
|
||||
# query = "CALL db.labels() YIELD label RETURN label"
|
||||
|
||||
# Method 2: Query compatible with older versions
|
||||
query = """
|
||||
MATCH (n)
|
||||
WITH DISTINCT labels(n) AS node_labels
|
||||
UNWIND node_labels AS label
|
||||
RETURN DISTINCT label
|
||||
ORDER BY label
|
||||
"""
|
||||
|
||||
result = await session.run(query)
|
||||
labels = []
|
||||
async for record in result:
|
||||
labels.append(record["label"])
|
||||
return labels
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
|
@@ -5,6 +5,7 @@ from typing import Any, final
|
||||
import numpy as np
|
||||
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from lightrag.utils import (
|
||||
logger,
|
||||
)
|
||||
@@ -16,11 +17,12 @@ import pipmaster as pm
|
||||
|
||||
if not pm.is_installed("networkx"):
|
||||
pm.install("networkx")
|
||||
|
||||
if not pm.is_installed("graspologic"):
|
||||
pm.install("graspologic")
|
||||
|
||||
from graspologic import embed
|
||||
import networkx as nx
|
||||
from graspologic import embed
|
||||
|
||||
|
||||
@final
|
||||
@@ -165,3 +167,11 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
for source, target in edges:
|
||||
if self._graph.has_edge(source, target):
|
||||
self._graph.remove_edge(source, target)
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
|
@@ -8,6 +8,7 @@ from typing import Any, Union, final
|
||||
import numpy as np
|
||||
import configparser
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
|
||||
from ..base import (
|
||||
BaseGraphStorage,
|
||||
@@ -669,6 +670,14 @@ class OracleGraphStorage(BaseGraphStorage):
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
N_T = {
|
||||
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
||||
|
@@ -7,6 +7,7 @@ from typing import Any, Union, final
|
||||
import numpy as np
|
||||
import configparser
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
|
||||
import sys
|
||||
from tenacity import (
|
||||
@@ -177,10 +178,12 @@ class PostgreSQLDB:
|
||||
asyncpg.exceptions.UniqueViolationError,
|
||||
asyncpg.exceptions.DuplicateTableError,
|
||||
) as e:
|
||||
if not upsert:
|
||||
logger.error(f"PostgreSQL, upsert error: {e}")
|
||||
if upsert:
|
||||
print("Key value duplicate, but upsert succeeded.")
|
||||
else:
|
||||
logger.error(f"Upsert error: {e}")
|
||||
except Exception as e:
|
||||
logger.error(f"PostgreSQL database, sql:{sql}, data:{data}, error:{e}")
|
||||
logger.error(f"PostgreSQL database,\nsql:{sql},\ndata:{data},\nerror:{e}")
|
||||
raise
|
||||
|
||||
|
||||
@@ -1084,6 +1087,14 @@ class PGGraphStorage(BaseGraphStorage):
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
|
||||
async def drop(self) -> None:
|
||||
"""Drop the storage"""
|
||||
drop_sql = SQL_TEMPLATES["drop_vdb_entity"]
|
||||
|
@@ -5,6 +5,8 @@ from typing import Any, Union, final
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
|
||||
|
||||
from ..base import BaseGraphStorage, BaseKVStorage, BaseVectorStorage
|
||||
from ..namespace import NameSpace, is_namespace
|
||||
@@ -558,6 +560,14 @@ class TiDBGraphStorage(BaseGraphStorage):
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
N_T = {
|
||||
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
||||
|
@@ -47,6 +47,7 @@ from .utils import (
|
||||
set_logger,
|
||||
encode_string_by_tiktoken,
|
||||
)
|
||||
from .types import KnowledgeGraph
|
||||
|
||||
# TODO: TO REMOVE @Yannick
|
||||
config = configparser.ConfigParser()
|
||||
@@ -184,7 +185,7 @@ class LightRAG:
|
||||
"""Maximum number of concurrent embedding function calls."""
|
||||
|
||||
embedding_cache_config: dict[str, Any] = field(
|
||||
default={
|
||||
default_factory=lambda: {
|
||||
"enabled": False,
|
||||
"similarity_threshold": 0.95,
|
||||
"use_llm_check": False,
|
||||
@@ -457,6 +458,17 @@ class LightRAG:
|
||||
self._storages_status = StoragesStatus.FINALIZED
|
||||
logger.debug("Finalized Storages")
|
||||
|
||||
async def get_graph_labels(self):
|
||||
text = await self.chunk_entity_relation_graph.get_all_labels()
|
||||
return text
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, nodel_label: str, max_depth: int
|
||||
) -> KnowledgeGraph:
|
||||
return await self.chunk_entity_relation_graph.get_knowledge_graph(
|
||||
node_label=nodel_label, max_depth=max_depth
|
||||
)
|
||||
|
||||
def _get_storage_class(self, storage_name: str) -> Callable[..., Any]:
|
||||
import_path = STORAGES[storage_name]
|
||||
storage_class = lazy_external_import(import_path, storage_name)
|
||||
@@ -727,7 +739,7 @@ class LightRAG:
|
||||
|
||||
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
|
||||
try:
|
||||
new_kg = await extract_entities(
|
||||
await extract_entities(
|
||||
chunk,
|
||||
knowledge_graph_inst=self.chunk_entity_relation_graph,
|
||||
entity_vdb=self.entities_vdb,
|
||||
@@ -735,13 +747,6 @@ class LightRAG:
|
||||
llm_response_cache=self.llm_response_cache,
|
||||
global_config=asdict(self),
|
||||
)
|
||||
if new_kg is None:
|
||||
logger.info("No new entities or relationships extracted.")
|
||||
else:
|
||||
async with self._entity_lock:
|
||||
logger.info("New entities or relationships extracted.")
|
||||
self.chunk_entity_relation_graph = new_kg
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Failed to extract entities and relationships")
|
||||
raise e
|
||||
|
@@ -329,7 +329,7 @@ async def extract_entities(
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
global_config: dict[str, str],
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
) -> BaseGraphStorage | None:
|
||||
) -> None:
|
||||
use_llm_func: callable = global_config["llm_model_func"]
|
||||
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
||||
enable_llm_cache_for_entity_extract: bool = global_config[
|
||||
@@ -522,16 +522,18 @@ async def extract_entities(
|
||||
]
|
||||
)
|
||||
|
||||
if not len(all_entities_data) and not len(all_relationships_data):
|
||||
logger.warning(
|
||||
"Didn't extract any entities and relationships, maybe your LLM is not working"
|
||||
)
|
||||
return None
|
||||
if not (all_entities_data or all_relationships_data):
|
||||
logger.info("Didn't extract any entities and relationships.")
|
||||
return
|
||||
|
||||
if not len(all_entities_data):
|
||||
logger.warning("Didn't extract any entities")
|
||||
if not len(all_relationships_data):
|
||||
logger.warning("Didn't extract any relationships")
|
||||
if not all_entities_data:
|
||||
logger.info("Didn't extract any entities")
|
||||
if not all_relationships_data:
|
||||
logger.info("Didn't extract any relationships")
|
||||
|
||||
logger.info(
|
||||
f"New entities or relationships extracted, entities:{all_entities_data}, relationships:{all_relationships_data}"
|
||||
)
|
||||
|
||||
if entity_vdb is not None:
|
||||
data_for_vdb = {
|
||||
@@ -560,8 +562,6 @@ async def extract_entities(
|
||||
}
|
||||
await relationships_vdb.upsert(data_for_vdb)
|
||||
|
||||
return knowledge_graph_inst
|
||||
|
||||
|
||||
async def kg_query(
|
||||
query: str,
|
||||
|
@@ -1,6 +1,6 @@
|
||||
from typing import Optional, Tuple, Dict, List
|
||||
import numpy as np
|
||||
|
||||
import networkx as nx
|
||||
import pipmaster as pm
|
||||
|
||||
# Added automatic libraries install using pipmaster
|
||||
@@ -12,10 +12,7 @@ if not pm.is_installed("pyglm"):
|
||||
pm.install("pyglm")
|
||||
if not pm.is_installed("python-louvain"):
|
||||
pm.install("python-louvain")
|
||||
if not pm.is_installed("networkx"):
|
||||
pm.install("networkx")
|
||||
|
||||
import networkx as nx
|
||||
import moderngl
|
||||
from imgui_bundle import imgui, immapp, hello_imgui
|
||||
import community
|
||||
|
Reference in New Issue
Block a user