Added OpenAI compatible options and examples
This commit is contained in:
69
examples/lightrag_openai_compatible_demo.py
Normal file
69
examples/lightrag_openai_compatible_demo.py
Normal file
@@ -0,0 +1,69 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"solar-mini",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar",
|
||||
**kwargs
|
||||
)
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar"
|
||||
)
|
||||
|
||||
# function test
|
||||
async def test_funcs():
|
||||
result = await llm_model_func("How are you?")
|
||||
print("llm_model_func: ", result)
|
||||
|
||||
result = await embedding_func(["How are you?"])
|
||||
print("embedding_func: ", result)
|
||||
|
||||
asyncio.run(test_funcs())
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=4096,
|
||||
max_token_size=8192,
|
||||
func=embedding_func
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
@@ -19,9 +19,12 @@ os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
)
|
||||
async def openai_complete_if_cache(
|
||||
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
model, prompt, system_prompt=None, history_messages=[], base_url=None, api_key=None, **kwargs
|
||||
) -> str:
|
||||
openai_async_client = AsyncOpenAI()
|
||||
if api_key:
|
||||
os.environ["OPENAI_API_KEY"] = api_key
|
||||
|
||||
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
||||
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
@@ -133,10 +136,13 @@ async def hf_model_complete(
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
)
|
||||
async def openai_embedding(texts: list[str]) -> np.ndarray:
|
||||
openai_async_client = AsyncOpenAI()
|
||||
async def openai_embedding(texts: list[str], model: str = "text-embedding-3-small", base_url: str = None, api_key: str = None) -> np.ndarray:
|
||||
if api_key:
|
||||
os.environ["OPENAI_API_KEY"] = api_key
|
||||
|
||||
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model="text-embedding-3-small", input=texts, encoding_format="float"
|
||||
model=model, input=texts, encoding_format="float"
|
||||
)
|
||||
return np.array([dp.embedding for dp in response.data])
|
||||
|
||||
|
Reference in New Issue
Block a user