Add custom function with separate keyword extraction for user's query and a separate prompt

This commit is contained in:
Gurjot Singh
2025-01-14 22:10:47 +05:30
parent 61349b0fe7
commit ef61ffe444
4 changed files with 313 additions and 1 deletions

View File

@@ -680,6 +680,206 @@ async def kg_query(
)
return response
async def kg_query_with_keywords(
query: str,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
global_config: dict,
hashing_kv: BaseKVStorage = None,
) -> str:
"""
Refactored kg_query that does NOT extract keywords by itself.
It expects hl_keywords and ll_keywords to be set in query_param, or defaults to empty.
Then it uses those to build context and produce a final LLM response.
"""
# ---------------------------
# 0) Handle potential cache
# ---------------------------
use_model_func = global_config["llm_model_func"]
args_hash = compute_args_hash(query_param.mode, query)
cached_response, quantized, min_val, max_val = await handle_cache(
hashing_kv, args_hash, query, query_param.mode
)
if cached_response is not None:
return cached_response
# ---------------------------
# 1) RETRIEVE KEYWORDS FROM query_param
# ---------------------------
# If these fields don't exist, default to empty lists/strings.
hl_keywords = getattr(query_param, "hl_keywords", []) or []
ll_keywords = getattr(query_param, "ll_keywords", []) or []
# If neither has any keywords, you could handle that logic here.
if not hl_keywords and not ll_keywords:
logger.warning("No keywords found in query_param. Could default to global mode or fail.")
return PROMPTS["fail_response"]
if not ll_keywords and query_param.mode in ["local", "hybrid"]:
logger.warning("low_level_keywords is empty, switching to global mode.")
query_param.mode = "global"
if not hl_keywords and query_param.mode in ["global", "hybrid"]:
logger.warning("high_level_keywords is empty, switching to local mode.")
query_param.mode = "local"
# Flatten low-level and high-level keywords if needed
ll_keywords_flat = [item for sublist in ll_keywords for item in sublist] if any(isinstance(i, list) for i in ll_keywords) else ll_keywords
hl_keywords_flat = [item for sublist in hl_keywords for item in sublist] if any(isinstance(i, list) for i in hl_keywords) else hl_keywords
# Join the flattened lists
ll_keywords_str = ", ".join(ll_keywords_flat) if ll_keywords_flat else ""
hl_keywords_str = ", ".join(hl_keywords_flat) if hl_keywords_flat else ""
keywords = [ll_keywords_str, hl_keywords_str]
logger.info("Using %s mode for query processing", query_param.mode)
# ---------------------------
# 2) BUILD CONTEXT
# ---------------------------
context = await _build_query_context(
keywords,
knowledge_graph_inst,
entities_vdb,
relationships_vdb,
text_chunks_db,
query_param,
)
if not context:
return PROMPTS["fail_response"]
# If only context is needed, return it
if query_param.only_need_context:
return context
# ---------------------------
# 3) BUILD THE SYSTEM PROMPT + CALL LLM
# ---------------------------
sys_prompt_temp = PROMPTS["rag_response"]
sys_prompt = sys_prompt_temp.format(
context_data=context, response_type=query_param.response_type
)
if query_param.only_need_prompt:
return sys_prompt
# Now call the LLM with the final system prompt
response = await use_model_func(
query,
system_prompt=sys_prompt,
stream=query_param.stream,
)
# Clean up the response
if isinstance(response, str) and len(response) > len(sys_prompt):
response = (
response.replace(sys_prompt, "")
.replace("user", "")
.replace("model", "")
.replace(query, "")
.replace("<system>", "")
.replace("</system>", "")
.strip()
)
# ---------------------------
# 4) SAVE TO CACHE
# ---------------------------
await save_to_cache(
hashing_kv,
CacheData(
args_hash=args_hash,
content=response,
prompt=query,
quantized=quantized,
min_val=min_val,
max_val=max_val,
mode=query_param.mode,
),
)
return response
async def extract_keywords_only(
text: str,
param: QueryParam,
global_config: dict,
hashing_kv: BaseKVStorage = None,
) -> tuple[list[str], list[str]]:
"""
Extract high-level and low-level keywords from the given 'text' using the LLM.
This method does NOT build the final RAG context or provide a final answer.
It ONLY extracts keywords (hl_keywords, ll_keywords).
"""
# 1. Handle cache if needed
args_hash = compute_args_hash(param.mode, text)
cached_response, quantized, min_val, max_val = await handle_cache(
hashing_kv, args_hash, text, param.mode
)
if cached_response is not None:
# parse the cached_response if its JSON containing keywords
# or simply return (hl_keywords, ll_keywords) from cached
# Assuming cached_response is in the same JSON structure:
match = re.search(r"\{.*\}", cached_response, re.DOTALL)
if match:
keywords_data = json.loads(match.group(0))
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
return hl_keywords, ll_keywords
return [], []
# 2. Build the examples
example_number = global_config["addon_params"].get("example_number", None)
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
examples = "\n".join(
PROMPTS["keywords_extraction_examples"][: int(example_number)]
)
else:
examples = "\n".join(PROMPTS["keywords_extraction_examples"])
language = global_config["addon_params"].get(
"language", PROMPTS["DEFAULT_LANGUAGE"]
)
# 3. Build the keyword-extraction prompt
kw_prompt_temp = PROMPTS["keywords_extraction"]
kw_prompt = kw_prompt_temp.format(query=text, examples=examples, language=language)
# 4. Call the LLM for keyword extraction
use_model_func = global_config["llm_model_func"]
result = await use_model_func(kw_prompt, keyword_extraction=True)
# 5. Parse out JSON from the LLM response
match = re.search(r"\{.*\}", result, re.DOTALL)
if not match:
logger.error("No JSON-like structure found in the result.")
return [], []
try:
keywords_data = json.loads(match.group(0))
except json.JSONDecodeError as e:
logger.error(f"JSON parsing error: {e}")
return [], []
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
# 6. Cache the result if needed
await save_to_cache(
hashing_kv,
CacheData(
args_hash=args_hash,
content=result,
prompt=text,
quantized=quantized,
min_val=min_val,
max_val=max_val,
mode=param.mode,
),
)
return hl_keywords, ll_keywords
async def _build_query_context(
query: list,