refactor: make cosine similarity threshold a required config parameter
• Remove default threshold from env var • Add validation for missing threshold • Move default to lightrag.py config init • Update all vector DB implementations • Improve threshold validation consistency
This commit is contained in:
@@ -23,14 +23,15 @@ class FaissVectorDBStorage(BaseVectorStorage):
|
||||
Uses cosine similarity by storing normalized vectors in a Faiss index with inner product search.
|
||||
"""
|
||||
|
||||
cosine_better_than_threshold: float = float(os.getenv("COSINE_THRESHOLD", "0.2"))
|
||||
cosine_better_than_threshold: float = None
|
||||
|
||||
def __post_init__(self):
|
||||
# Grab config values if available
|
||||
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
||||
self.cosine_better_than_threshold = config.get(
|
||||
"cosine_better_than_threshold", self.cosine_better_than_threshold
|
||||
)
|
||||
cosine_threshold = config.get("cosine_better_than_threshold")
|
||||
if cosine_threshold is None:
|
||||
raise ValueError("cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs")
|
||||
self.cosine_better_than_threshold = cosine_threshold
|
||||
|
||||
# Where to save index file if you want persistent storage
|
||||
self._faiss_index_file = os.path.join(
|
||||
|
Reference in New Issue
Block a user