Merge pull request #739 from YanSte/fixes

Improve Parallelism & Fix Bugs After Testing
This commit is contained in:
zrguo
2025-02-10 13:52:19 +08:00
committed by GitHub
9 changed files with 188 additions and 224 deletions

View File

@@ -1,24 +1,26 @@
from enum import Enum
import os
from dataclasses import dataclass, field
from enum import Enum
from typing import (
Any,
Literal,
Optional,
TypedDict,
Union,
Literal,
TypeVar,
Any,
Union,
)
import numpy as np
from .utils import EmbeddingFunc
TextChunkSchema = TypedDict(
"TextChunkSchema",
{"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int},
)
class TextChunkSchema(TypedDict):
tokens: int
content: str
full_doc_id: str
chunk_order_index: int
T = TypeVar("T")
@@ -57,11 +59,11 @@ class StorageNameSpace:
global_config: dict[str, Any]
async def index_done_callback(self):
"""commit the storage operations after indexing"""
"""Commit the storage operations after indexing"""
pass
async def query_done_callback(self):
"""commit the storage operations after querying"""
"""Commit the storage operations after querying"""
pass
@@ -84,14 +86,14 @@ class BaseVectorStorage(StorageNameSpace):
class BaseKVStorage(StorageNameSpace):
embedding_func: EmbeddingFunc
async def get_by_id(self, id: str) -> dict[str, Any]:
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
raise NotImplementedError
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
raise NotImplementedError
async def filter_keys(self, data: list[str]) -> set[str]:
"""return un-exist keys"""
async def filter_keys(self, data: set[str]) -> set[str]:
"""Return un-exist keys"""
raise NotImplementedError
async def upsert(self, data: dict[str, Any]) -> None:

View File

@@ -1,16 +1,16 @@
import asyncio
import os
from dataclasses import dataclass
from typing import Any
from typing import Any, Union
from lightrag.utils import (
logger,
load_json,
write_json,
)
from lightrag.base import (
BaseKVStorage,
)
from lightrag.utils import (
load_json,
logger,
write_json,
)
@dataclass
@@ -25,8 +25,8 @@ class JsonKVStorage(BaseKVStorage):
async def index_done_callback(self):
write_json(self._data, self._file_name)
async def get_by_id(self, id: str) -> dict[str, Any]:
return self._data.get(id, {})
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
return self._data.get(id)
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
return [
@@ -38,8 +38,8 @@ class JsonKVStorage(BaseKVStorage):
for id in ids
]
async def filter_keys(self, data: list[str]) -> set[str]:
return set([s for s in data if s not in self._data])
async def filter_keys(self, data: set[str]) -> set[str]:
return set(data) - set(self._data.keys())
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
left_data = {k: v for k, v in data.items() if k not in self._data}

View File

@@ -48,21 +48,20 @@ Usage:
"""
import os
from dataclasses import dataclass
import os
from typing import Any, Union
from lightrag.utils import (
logger,
load_json,
write_json,
)
from lightrag.base import (
DocStatus,
DocProcessingStatus,
DocStatus,
DocStatusStorage,
)
from lightrag.utils import (
load_json,
logger,
write_json,
)
@dataclass
@@ -75,15 +74,17 @@ class JsonDocStatusStorage(DocStatusStorage):
self._data: dict[str, Any] = load_json(self._file_name) or {}
logger.info(f"Loaded document status storage with {len(self._data)} records")
async def filter_keys(self, data: list[str]) -> set[str]:
async def filter_keys(self, data: set[str]) -> set[str]:
"""Return keys that should be processed (not in storage or not successfully processed)"""
return set(
[
k
for k in data
if k not in self._data or self._data[k]["status"] != DocStatus.PROCESSED
]
)
return set(data) - set(self._data.keys())
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
result: list[dict[str, Any]] = []
for id in ids:
data = self._data.get(id, None)
if data:
result.append(data)
return result
async def get_status_counts(self) -> dict[str, int]:
"""Get counts of documents in each status"""
@@ -94,11 +95,19 @@ class JsonDocStatusStorage(DocStatusStorage):
async def get_failed_docs(self) -> dict[str, DocProcessingStatus]:
"""Get all failed documents"""
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.FAILED}
return {
k: DocProcessingStatus(**v)
for k, v in self._data.items()
if v["status"] == DocStatus.FAILED
}
async def get_pending_docs(self) -> dict[str, DocProcessingStatus]:
"""Get all pending documents"""
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.PENDING}
return {
k: DocProcessingStatus(**v)
for k, v in self._data.items()
if v["status"] == DocStatus.PENDING
}
async def index_done_callback(self):
"""Save data to file after indexing"""
@@ -113,12 +122,8 @@ class JsonDocStatusStorage(DocStatusStorage):
self._data.update(data)
await self.index_done_callback()
async def get_by_id(self, id: str) -> dict[str, Any]:
return self._data.get(id, {})
async def get(self, doc_id: str) -> Union[DocProcessingStatus, None]:
"""Get document status by ID"""
return self._data.get(doc_id)
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
return self._data.get(id)
async def delete(self, doc_ids: list[str]):
"""Delete document status by IDs"""

View File

@@ -1,8 +1,9 @@
import os
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass
import pipmaster as pm
import numpy as np
import pipmaster as pm
from tqdm.asyncio import tqdm as tqdm_async
if not pm.is_installed("pymongo"):
pm.install("pymongo")
@@ -10,13 +11,14 @@ if not pm.is_installed("pymongo"):
if not pm.is_installed("motor"):
pm.install("motor")
from pymongo import MongoClient
from motor.motor_asyncio import AsyncIOMotorClient
from typing import Any, Union, List, Tuple
from typing import Any, List, Tuple, Union
from ..utils import logger
from ..base import BaseKVStorage, BaseGraphStorage
from motor.motor_asyncio import AsyncIOMotorClient
from pymongo import MongoClient
from ..base import BaseGraphStorage, BaseKVStorage
from ..namespace import NameSpace, is_namespace
from ..utils import logger
@dataclass
@@ -29,13 +31,13 @@ class MongoKVStorage(BaseKVStorage):
self._data = database.get_collection(self.namespace)
logger.info(f"Use MongoDB as KV {self.namespace}")
async def get_by_id(self, id: str) -> dict[str, Any]:
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
return self._data.find_one({"_id": id})
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
return list(self._data.find({"_id": {"$in": ids}}))
async def filter_keys(self, data: list[str]) -> set[str]:
async def filter_keys(self, data: set[str]) -> set[str]:
existing_ids = [
str(x["_id"]) for x in self._data.find({"_id": {"$in": data}}, {"_id": 1})
]
@@ -170,7 +172,6 @@ class MongoGraphStorage(BaseGraphStorage):
But typically for a direct edge, we might just do a find_one.
Below is a demonstration approach.
"""
# We can do a single-hop graphLookup (maxDepth=0 or 1).
# Then check if the target_node appears among the edges array.
pipeline = [

View File

@@ -1,27 +1,28 @@
import os
import array
import asyncio
import os
# import html
# import os
from dataclasses import dataclass
from typing import Any, Union
import numpy as np
import array
import pipmaster as pm
if not pm.is_installed("oracledb"):
pm.install("oracledb")
from ..utils import logger
import oracledb
from ..base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
)
from ..namespace import NameSpace, is_namespace
import oracledb
from ..utils import logger
class OracleDB:
@@ -107,7 +108,7 @@ class OracleDB:
"SELECT id FROM GRAPH_TABLE (lightrag_graph MATCH (a) COLUMNS (a.id)) fetch first row only"
)
else:
await self.query("SELECT 1 FROM {k}".format(k=k))
await self.query(f"SELECT 1 FROM {k}")
except Exception as e:
logger.error(f"Failed to check table {k} in Oracle database")
logger.error(f"Oracle database error: {e}")
@@ -181,8 +182,8 @@ class OracleKVStorage(BaseKVStorage):
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> dict[str, Any]:
"""get doc_full data based on id."""
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
"""Get doc_full data based on id."""
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"workspace": self.db.workspace, "id": id}
# print("get_by_id:"+SQL)
@@ -191,7 +192,10 @@ class OracleKVStorage(BaseKVStorage):
res = {}
for row in array_res:
res[row["id"]] = row
if res:
return res
else:
return None
else:
return await self.db.query(SQL, params)
@@ -209,7 +213,7 @@ class OracleKVStorage(BaseKVStorage):
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""get doc_chunks data based on id"""
"""Get doc_chunks data based on id"""
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
ids=",".join([f"'{id}'" for id in ids])
)

View File

@@ -4,34 +4,35 @@ import json
import os
import time
from dataclasses import dataclass
from typing import Union, List, Dict, Set, Any, Tuple
import numpy as np
from typing import Any, Dict, List, Set, Tuple, Union
import numpy as np
import pipmaster as pm
if not pm.is_installed("asyncpg"):
pm.install("asyncpg")
import asyncpg
import sys
from tqdm.asyncio import tqdm as tqdm_async
import asyncpg
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from tqdm.asyncio import tqdm as tqdm_async
from ..utils import logger
from ..base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
DocStatusStorage,
DocStatus,
DocProcessingStatus,
BaseGraphStorage,
DocStatus,
DocStatusStorage,
)
from ..namespace import NameSpace, is_namespace
from ..utils import logger
if sys.platform.startswith("win"):
import asyncio.windows_events
@@ -82,7 +83,7 @@ class PostgreSQLDB:
async def check_tables(self):
for k, v in TABLES.items():
try:
await self.query("SELECT 1 FROM {k} LIMIT 1".format(k=k))
await self.query(f"SELECT 1 FROM {k} LIMIT 1")
except Exception as e:
logger.error(f"Failed to check table {k} in PostgreSQL database")
logger.error(f"PostgreSQL database error: {e}")
@@ -183,7 +184,7 @@ class PGKVStorage(BaseKVStorage):
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> dict[str, Any]:
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
"""Get doc_full data by id."""
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"workspace": self.db.workspace, "id": id}
@@ -192,9 +193,10 @@ class PGKVStorage(BaseKVStorage):
res = {}
for row in array_res:
res[row["id"]] = row
return res
return res if res else None
else:
return await self.db.query(sql, params)
response = await self.db.query(sql, params)
return response if response else None
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
"""Specifically for llm_response_cache."""
@@ -421,7 +423,7 @@ class PGDocStatusStorage(DocStatusStorage):
def __post_init__(self):
pass
async def filter_keys(self, data: list[str]) -> set[str]:
async def filter_keys(self, data: set[str]) -> set[str]:
"""Return keys that don't exist in storage"""
keys = ",".join([f"'{_id}'" for _id in data])
sql = (
@@ -435,12 +437,12 @@ class PGDocStatusStorage(DocStatusStorage):
existed = set([element["id"] for element in result])
return set(data) - existed
async def get_by_id(self, id: str) -> dict[str, Any]:
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and id=$2"
params = {"workspace": self.db.workspace, "id": id}
result = await self.db.query(sql, params, True)
if result is None or result == []:
return {}
return None
else:
return DocProcessingStatus(
content=result[0]["content"],

View File

@@ -1,5 +1,5 @@
import os
from typing import Any
from typing import Any, Union
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass
import pipmaster as pm
@@ -21,7 +21,7 @@ class RedisKVStorage(BaseKVStorage):
self._redis = Redis.from_url(redis_url, decode_responses=True)
logger.info(f"Use Redis as KV {self.namespace}")
async def get_by_id(self, id):
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
data = await self._redis.get(f"{self.namespace}:{id}")
return json.loads(data) if data else None
@@ -32,7 +32,7 @@ class RedisKVStorage(BaseKVStorage):
results = await pipe.execute()
return [json.loads(result) if result else None for result in results]
async def filter_keys(self, data: list[str]) -> set[str]:
async def filter_keys(self, data: set[str]) -> set[str]:
pipe = self._redis.pipeline()
for key in data:
pipe.exists(f"{self.namespace}:{key}")

View File

@@ -14,12 +14,12 @@ if not pm.is_installed("sqlalchemy"):
from sqlalchemy import create_engine, text
from tqdm import tqdm
from ..base import BaseVectorStorage, BaseKVStorage, BaseGraphStorage
from ..utils import logger
from ..base import BaseGraphStorage, BaseKVStorage, BaseVectorStorage
from ..namespace import NameSpace, is_namespace
from ..utils import logger
class TiDB(object):
class TiDB:
def __init__(self, config, **kwargs):
self.host = config.get("host", None)
self.port = config.get("port", None)
@@ -108,12 +108,12 @@ class TiDBKVStorage(BaseKVStorage):
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> dict[str, Any]:
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
"""Fetch doc_full data by id."""
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"id": id}
# print("get_by_id:"+SQL)
return await self.db.query(SQL, params)
response = await self.db.query(SQL, params)
return response if response else None
# Query by id
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
@@ -178,7 +178,7 @@ class TiDBKVStorage(BaseKVStorage):
"tokens": item["tokens"],
"chunk_order_index": item["chunk_order_index"],
"full_doc_id": item["full_doc_id"],
"content_vector": f"{item['__vector__'].tolist()}",
"content_vector": f'{item["__vector__"].tolist()}',
"workspace": self.db.workspace,
}
)
@@ -222,8 +222,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
)
async def query(self, query: str, top_k: int) -> list[dict]:
"""search from tidb vector"""
"""Search from tidb vector"""
embeddings = await self.embedding_func([query])
embedding = embeddings[0]
@@ -286,7 +285,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
"id": item["id"],
"name": item["entity_name"],
"content": item["content"],
"content_vector": f"{item['content_vector'].tolist()}",
"content_vector": f'{item["content_vector"].tolist()}',
"workspace": self.db.workspace,
}
# update entity_id if node inserted by graph_storage_instance before
@@ -308,7 +307,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
"source_name": item["src_id"],
"target_name": item["tgt_id"],
"content": item["content"],
"content_vector": f"{item['content_vector'].tolist()}",
"content_vector": f'{item["content_vector"].tolist()}',
"workspace": self.db.workspace,
}
# update relation_id if node inserted by graph_storage_instance before

View File

@@ -1,28 +1,10 @@
import asyncio
import os
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import asdict, dataclass, field
from datetime import datetime
from functools import partial
from typing import Any, Callable, Coroutine, Optional, Type, Union, cast
from .operate import (
chunking_by_token_size,
extract_entities,
extract_keywords_only,
kg_query,
kg_query_with_keywords,
mix_kg_vector_query,
naive_query,
)
from typing import Any, Callable, Optional, Type, Union, cast
from .utils import (
EmbeddingFunc,
compute_mdhash_id,
limit_async_func_call,
convert_response_to_json,
logger,
set_logger,
)
from .base import (
BaseGraphStorage,
BaseKVStorage,
@@ -33,10 +15,25 @@ from .base import (
QueryParam,
StorageNameSpace,
)
from .namespace import NameSpace, make_namespace
from .operate import (
chunking_by_token_size,
extract_entities,
extract_keywords_only,
kg_query,
kg_query_with_keywords,
mix_kg_vector_query,
naive_query,
)
from .prompt import GRAPH_FIELD_SEP
from .utils import (
EmbeddingFunc,
compute_mdhash_id,
convert_response_to_json,
limit_async_func_call,
logger,
set_logger,
)
STORAGES = {
"NetworkXStorage": ".kg.networkx_impl",
@@ -67,7 +64,6 @@ STORAGES = {
def lazy_external_import(module_name: str, class_name: str):
"""Lazily import a class from an external module based on the package of the caller."""
# Get the caller's module and package
import inspect
@@ -113,7 +109,7 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
@dataclass
class LightRAG:
working_dir: str = field(
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
default_factory=lambda: f'./lightrag_cache_{datetime.now().strftime("%Y-%m-%d-%H:%M:%S")}'
)
# Default not to use embedding cache
embedding_cache_config: dict = field(
@@ -412,7 +408,7 @@ class LightRAG:
doc_key = compute_mdhash_id(full_text.strip(), prefix="doc-")
new_docs = {doc_key: {"content": full_text.strip()}}
_add_doc_keys = await self.full_docs.filter_keys([doc_key])
_add_doc_keys = await self.full_docs.filter_keys(set(doc_key))
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if not len(new_docs):
logger.warning("This document is already in the storage.")
@@ -421,7 +417,7 @@ class LightRAG:
update_storage = True
logger.info(f"[New Docs] inserting {len(new_docs)} docs")
inserting_chunks = {}
inserting_chunks: dict[str, Any] = {}
for chunk_text in text_chunks:
chunk_text_stripped = chunk_text.strip()
chunk_key = compute_mdhash_id(chunk_text_stripped, prefix="chunk-")
@@ -431,37 +427,22 @@ class LightRAG:
"full_doc_id": doc_key,
}
_add_chunk_keys = await self.text_chunks.filter_keys(
list(inserting_chunks.keys())
)
doc_ids = set(inserting_chunks.keys())
add_chunk_keys = await self.text_chunks.filter_keys(doc_ids)
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
k: v for k, v in inserting_chunks.items() if k in add_chunk_keys
}
if not len(inserting_chunks):
logger.warning("All chunks are already in the storage.")
return
logger.info(f"[New Chunks] inserting {len(inserting_chunks)} chunks")
await self.chunks_vdb.upsert(inserting_chunks)
logger.info("[Entity Extraction]...")
maybe_new_kg = await extract_entities(
inserting_chunks,
knowledge_graph_inst=self.chunk_entity_relation_graph,
entity_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
global_config=asdict(self),
)
if maybe_new_kg is None:
logger.warning("No new entities and relationships found")
return
else:
self.chunk_entity_relation_graph = maybe_new_kg
await self.full_docs.upsert(new_docs)
await self.text_chunks.upsert(inserting_chunks)
tasks = [
self.chunks_vdb.upsert(inserting_chunks),
self._process_entity_relation_graph(inserting_chunks),
self.full_docs.upsert(new_docs),
self.text_chunks.upsert(inserting_chunks),
]
await asyncio.gather(*tasks)
finally:
if update_storage:
@@ -496,15 +477,12 @@ class LightRAG:
}
# 3. Filter out already processed documents
add_doc_keys: set[str] = set()
# Get docs ids
in_process_keys = list(new_docs.keys())
# Get in progress docs ids
excluded_ids = await self.doc_status.get_by_ids(in_process_keys)
# Exclude already in process
add_doc_keys = new_docs.keys() - excluded_ids
# Filter
new_docs = {k: v for k, v in new_docs.items() if k in add_doc_keys}
all_new_doc_ids = set(new_docs.keys())
# Exclude IDs of documents that are already in progress
unique_new_doc_ids = await self.doc_status.filter_keys(all_new_doc_ids)
# Filter new_docs to only include documents with unique IDs
new_docs = {doc_id: new_docs[doc_id] for doc_id in unique_new_doc_ids}
if not new_docs:
logger.info("All documents have been processed or are duplicates")
@@ -535,47 +513,32 @@ class LightRAG:
# Fetch failed documents
failed_docs = await self.doc_status.get_failed_docs()
to_process_docs.update(failed_docs)
pending_docs = await self.doc_status.get_pending_docs()
to_process_docs.update(pending_docs)
pendings_docs = await self.doc_status.get_pending_docs()
to_process_docs.update(pendings_docs)
if not to_process_docs:
logger.info("All documents have been processed or are duplicates")
return
to_process_docs_ids = list(to_process_docs.keys())
# Get allready processed documents (text chunks and full docs)
text_chunks_processed_doc_ids = await self.text_chunks.filter_keys(
to_process_docs_ids
)
full_docs_processed_doc_ids = await self.full_docs.filter_keys(
to_process_docs_ids
)
# 2. split docs into chunks, insert chunks, update doc status
batch_size = self.addon_params.get("insert_batch_size", 10)
batch_docs_list = [
docs_batches = [
list(to_process_docs.items())[i : i + batch_size]
for i in range(0, len(to_process_docs), batch_size)
]
logger.info(f"Number of batches to process: {len(docs_batches)}.")
# 3. iterate over batches
tasks: dict[str, list[Coroutine[Any, Any, None]]] = {}
for batch_idx, ids_doc_processing_status in tqdm_async(
enumerate(batch_docs_list),
desc="Process Batches",
):
for batch_idx, docs_batch in enumerate(docs_batches):
# 4. iterate over batch
for id_doc_processing_status in tqdm_async(
ids_doc_processing_status,
desc=f"Process Batch {batch_idx}",
):
id_doc, status_doc = id_doc_processing_status
for doc_id_processing_status in docs_batch:
doc_id, status_doc = doc_id_processing_status
# Update status in processing
doc_status_id = compute_mdhash_id(status_doc.content, prefix="doc-")
await self.doc_status.upsert(
{
id_doc: {
doc_status_id: {
"status": DocStatus.PROCESSING,
"updated_at": datetime.now().isoformat(),
"content_summary": status_doc.content_summary,
@@ -588,7 +551,7 @@ class LightRAG:
chunks: dict[str, Any] = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": id_doc_processing_status,
"full_doc_id": doc_id,
}
for dp in self.chunking_func(
status_doc.content,
@@ -600,28 +563,18 @@ class LightRAG:
)
}
# Ensure chunk insertion and graph processing happen sequentially, not in parallel
await self.chunks_vdb.upsert(chunks)
await self._process_entity_relation_graph(chunks)
tasks[id_doc] = []
# Check if document already processed the doc
if id_doc not in full_docs_processed_doc_ids:
tasks[id_doc].append(
self.full_docs.upsert({id_doc: {"content": status_doc.content}})
)
# Check if chunks already processed the doc
if id_doc not in text_chunks_processed_doc_ids:
tasks[id_doc].append(self.text_chunks.upsert(chunks))
# Process document (text chunks and full docs) in parallel
for id_doc_processing_status, task in tasks.items():
tasks = [
self.chunks_vdb.upsert(chunks),
self._process_entity_relation_graph(chunks),
self.full_docs.upsert({doc_id: {"content": status_doc.content}}),
self.text_chunks.upsert(chunks),
]
try:
await asyncio.gather(*task)
await asyncio.gather(*tasks)
await self.doc_status.upsert(
{
id_doc_processing_status: {
doc_status_id: {
"status": DocStatus.PROCESSED,
"chunks_count": len(chunks),
"updated_at": datetime.now().isoformat(),
@@ -631,12 +584,10 @@ class LightRAG:
await self._insert_done()
except Exception as e:
logger.error(
f"Failed to process document {id_doc_processing_status}: {str(e)}"
)
logger.error(f"Failed to process document {doc_id}: {str(e)}")
await self.doc_status.upsert(
{
id_doc_processing_status: {
doc_status_id: {
"status": DocStatus.FAILED,
"error": str(e),
"updated_at": datetime.now().isoformat(),
@@ -644,6 +595,7 @@ class LightRAG:
}
)
continue
logger.info(f"Completed batch {batch_idx + 1} of {len(docs_batches)}.")
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
try:
@@ -656,8 +608,9 @@ class LightRAG:
global_config=asdict(self),
)
if new_kg is None:
logger.info("No entities or relationships extracted!")
logger.info("No new entities or relationships extracted.")
else:
logger.info("New entities or relationships extracted.")
self.chunk_entity_relation_graph = new_kg
except Exception as e:
@@ -895,7 +848,6 @@ class LightRAG:
1. Extract keywords from the 'query' using new function in operate.py.
2. Then run the standard aquery() flow with the final prompt (formatted_question).
"""
loop = always_get_an_event_loop()
return loop.run_until_complete(
self.aquery_with_separate_keyword_extraction(query, prompt, param)
@@ -908,7 +860,6 @@ class LightRAG:
1. Calls extract_keywords_only to get HL/LL keywords from 'query'.
2. Then calls kg_query(...) or naive_query(...), etc. as the main query, while also injecting the newly extracted keywords if needed.
"""
# ---------------------
# STEP 1: Keyword Extraction
# ---------------------