Added azure openai lightrag server to the api install and fused documentation.
This commit is contained in:
182
README.md
182
README.md
@@ -598,120 +598,6 @@ if __name__ == "__main__":
|
||||
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
||||
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
|
||||
|
||||
## API Server Implementation
|
||||
|
||||
LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests.
|
||||
|
||||
### Setting up the API Server
|
||||
<details>
|
||||
<summary>Click to expand setup instructions</summary>
|
||||
|
||||
1. First, ensure you have the required dependencies:
|
||||
```bash
|
||||
pip install fastapi uvicorn pydantic
|
||||
```
|
||||
|
||||
2. Set up your environment variables:
|
||||
```bash
|
||||
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
||||
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
|
||||
export OPENAI_API_KEY="Your OpenAI API key" # Required
|
||||
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
||||
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
||||
```
|
||||
|
||||
3. Run the API server:
|
||||
```bash
|
||||
python examples/lightrag_api_openai_compatible_demo.py
|
||||
```
|
||||
|
||||
The server will start on `http://0.0.0.0:8020`.
|
||||
</details>
|
||||
|
||||
### API Endpoints
|
||||
|
||||
The API server provides the following endpoints:
|
||||
|
||||
#### 1. Query Endpoint
|
||||
<details>
|
||||
<summary>Click to view Query endpoint details</summary>
|
||||
|
||||
- **URL:** `/query`
|
||||
- **Method:** POST
|
||||
- **Body:**
|
||||
```json
|
||||
{
|
||||
"query": "Your question here",
|
||||
"mode": "hybrid", // Can be "naive", "local", "global", or "hybrid"
|
||||
"only_need_context": true // Optional: Defaults to false, if true, only the referenced context will be returned, otherwise the llm answer will be returned
|
||||
}
|
||||
```
|
||||
- **Example:**
|
||||
```bash
|
||||
curl -X POST "http://127.0.0.1:8020/query" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "What are the main themes?", "mode": "hybrid"}'
|
||||
```
|
||||
</details>
|
||||
|
||||
#### 2. Insert Text Endpoint
|
||||
<details>
|
||||
<summary>Click to view Insert Text endpoint details</summary>
|
||||
|
||||
- **URL:** `/insert`
|
||||
- **Method:** POST
|
||||
- **Body:**
|
||||
```json
|
||||
{
|
||||
"text": "Your text content here"
|
||||
}
|
||||
```
|
||||
- **Example:**
|
||||
```bash
|
||||
curl -X POST "http://127.0.0.1:8020/insert" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"text": "Content to be inserted into RAG"}'
|
||||
```
|
||||
</details>
|
||||
|
||||
#### 3. Insert File Endpoint
|
||||
<details>
|
||||
<summary>Click to view Insert File endpoint details</summary>
|
||||
|
||||
- **URL:** `/insert_file`
|
||||
- **Method:** POST
|
||||
- **Body:**
|
||||
```json
|
||||
{
|
||||
"file_path": "path/to/your/file.txt"
|
||||
}
|
||||
```
|
||||
- **Example:**
|
||||
```bash
|
||||
curl -X POST "http://127.0.0.1:8020/insert_file" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"file_path": "./book.txt"}'
|
||||
```
|
||||
</details>
|
||||
|
||||
#### 4. Health Check Endpoint
|
||||
<details>
|
||||
<summary>Click to view Health Check endpoint details</summary>
|
||||
|
||||
- **URL:** `/health`
|
||||
- **Method:** GET
|
||||
- **Example:**
|
||||
```bash
|
||||
curl -X GET "http://127.0.0.1:8020/health"
|
||||
```
|
||||
</details>
|
||||
|
||||
### Configuration
|
||||
|
||||
The API server can be configured using environment variables:
|
||||
- `RAG_DIR`: Directory for storing the RAG index (default: "index_default")
|
||||
- API keys and base URLs should be configured in the code for your specific LLM and embedding model providers
|
||||
|
||||
### Error Handling
|
||||
<details>
|
||||
<summary>Click to view error handling details</summary>
|
||||
@@ -989,6 +875,12 @@ def extract_queries(file_path):
|
||||
│ ├── lightrag_siliconcloud_demo.py
|
||||
│ └── vram_management_demo.py
|
||||
├── lightrag/
|
||||
│ ├── api/
|
||||
│ │ ├── lollms_lightrag_server.py
|
||||
│ │ ├── ollama_lightrag_server.py
|
||||
│ │ ├── openai_lightrag_server.py
|
||||
│ │ ├── azure_openai_lightrag_server.py
|
||||
│ │ └── requirements.txt
|
||||
│ ├── kg/
|
||||
│ │ ├── __init__.py
|
||||
│ │ ├── oracle_impl.py
|
||||
@@ -1033,7 +925,7 @@ pip install "lightrag-hku[api]"
|
||||
|
||||
```bash
|
||||
# Clone the repository
|
||||
git clone https://github.com/ParisNeo/lightrag.git
|
||||
git clone https://github.com/HKUDS/lightrag.git
|
||||
|
||||
# Change to the repository directory
|
||||
cd lightrag
|
||||
@@ -1060,6 +952,27 @@ Before running any of the servers, ensure you have the corresponding backend ser
|
||||
- Requires valid OpenAI API credentials set in environment variables
|
||||
- OPENAI_API_KEY must be set
|
||||
|
||||
#### For Azure OpenAI Server
|
||||
Azure OpenAI API can be created using the following commands in Azure CLI (you need to install Azure CLI first from [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli)):
|
||||
```bash
|
||||
# Change the resource group name, location and OpenAI resource name as needed
|
||||
RESOURCE_GROUP_NAME=LightRAG
|
||||
LOCATION=swedencentral
|
||||
RESOURCE_NAME=LightRAG-OpenAI
|
||||
|
||||
az login
|
||||
az group create --name $RESOURCE_GROUP_NAME --location $LOCATION
|
||||
az cognitiveservices account create --name $RESOURCE_NAME --resource-group $RESOURCE_GROUP_NAME --kind OpenAI --sku S0 --location swedencentral
|
||||
az cognitiveservices account deployment create --resource-group $RESOURCE_GROUP_NAME --model-format OpenAI --name $RESOURCE_NAME --deployment-name gpt-4o --model-name gpt-4o --model-version "2024-08-06" --sku-capacity 100 --sku-name "Standard"
|
||||
az cognitiveservices account deployment create --resource-group $RESOURCE_GROUP_NAME --model-format OpenAI --name $RESOURCE_NAME --deployment-name text-embedding-3-large --model-name text-embedding-3-large --model-version "1" --sku-capacity 80 --sku-name "Standard"
|
||||
az cognitiveservices account show --name $RESOURCE_NAME --resource-group $RESOURCE_GROUP_NAME --query "properties.endpoint"
|
||||
az cognitiveservices account keys list --name $RESOURCE_NAME -g $RESOURCE_GROUP_NAME
|
||||
|
||||
```
|
||||
The output of the last command will give you the endpoint and the key for the OpenAI API. You can use these values to set the environment variables in the `.env` file.
|
||||
|
||||
|
||||
|
||||
### Configuration Options
|
||||
|
||||
Each server has its own specific configuration options:
|
||||
@@ -1112,6 +1025,22 @@ Each server has its own specific configuration options:
|
||||
| --input-dir | ./inputs | Input directory for documents |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
#### OpenAI AZURE Server Options
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | Server host |
|
||||
| --port | 9621 | Server port |
|
||||
| --model | gpt-4 | OpenAI model name |
|
||||
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-dir | ./inputs | Input directory for documents |
|
||||
| --enable-cache | True | Enable response cache |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
|
||||
### Example Usage
|
||||
|
||||
#### LoLLMs RAG Server
|
||||
@@ -1140,17 +1069,25 @@ ollama-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --em
|
||||
# Using GPT-4 with text-embedding-3-large
|
||||
openai-lightrag-server --port 9624 --model gpt-4 --embedding-model text-embedding-3-large
|
||||
```
|
||||
#### Azure OpenAI RAG Server
|
||||
```bash
|
||||
# Using GPT-4 with text-embedding-3-large
|
||||
azure-openai-lightrag-server --model gpt-4o --port 8080 --working-dir ./custom_rag --embedding-model text-embedding-3-large
|
||||
```
|
||||
|
||||
|
||||
**Important Notes:**
|
||||
- For LoLLMs: Make sure the specified models are installed in your LoLLMs instance
|
||||
- For Ollama: Make sure the specified models are installed in your Ollama instance
|
||||
- For OpenAI: Ensure you have set up your OPENAI_API_KEY environment variable
|
||||
- For Azure OpenAI: Build and configure your server as stated in the Prequisites section
|
||||
|
||||
For help on any server, use the --help flag:
|
||||
```bash
|
||||
lollms-lightrag-server --help
|
||||
ollama-lightrag-server --help
|
||||
openai-lightrag-server --help
|
||||
azure-openai-lightrag-server --help
|
||||
```
|
||||
|
||||
Note: If you don't need the API functionality, you can install the base package without API support using:
|
||||
@@ -1160,7 +1097,7 @@ pip install lightrag-hku
|
||||
|
||||
## API Endpoints
|
||||
|
||||
All servers (LoLLMs, Ollama, and OpenAI) provide the same REST API endpoints for RAG functionality.
|
||||
All servers (LoLLMs, Ollama, OpenAI and Azure OpenAI) provide the same REST API endpoints for RAG functionality.
|
||||
|
||||
### Query Endpoints
|
||||
|
||||
@@ -1245,7 +1182,10 @@ For OpenAI:
|
||||
```bash
|
||||
uvicorn openai_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
For Azure OpenAI:
|
||||
```bash
|
||||
uvicorn azure_openai_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
### API Documentation
|
||||
|
||||
When any server is running, visit:
|
||||
@@ -1301,6 +1241,14 @@ ollama-lightrag-server --input-dir ./my_documents --port 8080
|
||||
openai-lightrag-server --input-dir ./my_documents --port 9624
|
||||
```
|
||||
|
||||
#### Azure OpenAI RAG Server
|
||||
|
||||
```bash
|
||||
# Start server with automatic document vectorization
|
||||
# Existing documents are retrieved from cache, only new ones are processed
|
||||
azure-openai-lightrag-server --input-dir ./my_documents --port 9624
|
||||
```
|
||||
|
||||
**Important Notes:**
|
||||
- The `--input-dir` parameter enables automatic document processing at startup
|
||||
- Documents already in the database are not re-vectorized
|
||||
|
Reference in New Issue
Block a user