Added azure openai lightrag server to the api install and fused documentation.
This commit is contained in:
182
README.md
182
README.md
@@ -598,120 +598,6 @@ if __name__ == "__main__":
|
|||||||
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
||||||
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
|
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
|
||||||
|
|
||||||
## API Server Implementation
|
|
||||||
|
|
||||||
LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests.
|
|
||||||
|
|
||||||
### Setting up the API Server
|
|
||||||
<details>
|
|
||||||
<summary>Click to expand setup instructions</summary>
|
|
||||||
|
|
||||||
1. First, ensure you have the required dependencies:
|
|
||||||
```bash
|
|
||||||
pip install fastapi uvicorn pydantic
|
|
||||||
```
|
|
||||||
|
|
||||||
2. Set up your environment variables:
|
|
||||||
```bash
|
|
||||||
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
|
||||||
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
|
|
||||||
export OPENAI_API_KEY="Your OpenAI API key" # Required
|
|
||||||
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
|
||||||
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
|
||||||
```
|
|
||||||
|
|
||||||
3. Run the API server:
|
|
||||||
```bash
|
|
||||||
python examples/lightrag_api_openai_compatible_demo.py
|
|
||||||
```
|
|
||||||
|
|
||||||
The server will start on `http://0.0.0.0:8020`.
|
|
||||||
</details>
|
|
||||||
|
|
||||||
### API Endpoints
|
|
||||||
|
|
||||||
The API server provides the following endpoints:
|
|
||||||
|
|
||||||
#### 1. Query Endpoint
|
|
||||||
<details>
|
|
||||||
<summary>Click to view Query endpoint details</summary>
|
|
||||||
|
|
||||||
- **URL:** `/query`
|
|
||||||
- **Method:** POST
|
|
||||||
- **Body:**
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"query": "Your question here",
|
|
||||||
"mode": "hybrid", // Can be "naive", "local", "global", or "hybrid"
|
|
||||||
"only_need_context": true // Optional: Defaults to false, if true, only the referenced context will be returned, otherwise the llm answer will be returned
|
|
||||||
}
|
|
||||||
```
|
|
||||||
- **Example:**
|
|
||||||
```bash
|
|
||||||
curl -X POST "http://127.0.0.1:8020/query" \
|
|
||||||
-H "Content-Type: application/json" \
|
|
||||||
-d '{"query": "What are the main themes?", "mode": "hybrid"}'
|
|
||||||
```
|
|
||||||
</details>
|
|
||||||
|
|
||||||
#### 2. Insert Text Endpoint
|
|
||||||
<details>
|
|
||||||
<summary>Click to view Insert Text endpoint details</summary>
|
|
||||||
|
|
||||||
- **URL:** `/insert`
|
|
||||||
- **Method:** POST
|
|
||||||
- **Body:**
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"text": "Your text content here"
|
|
||||||
}
|
|
||||||
```
|
|
||||||
- **Example:**
|
|
||||||
```bash
|
|
||||||
curl -X POST "http://127.0.0.1:8020/insert" \
|
|
||||||
-H "Content-Type: application/json" \
|
|
||||||
-d '{"text": "Content to be inserted into RAG"}'
|
|
||||||
```
|
|
||||||
</details>
|
|
||||||
|
|
||||||
#### 3. Insert File Endpoint
|
|
||||||
<details>
|
|
||||||
<summary>Click to view Insert File endpoint details</summary>
|
|
||||||
|
|
||||||
- **URL:** `/insert_file`
|
|
||||||
- **Method:** POST
|
|
||||||
- **Body:**
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"file_path": "path/to/your/file.txt"
|
|
||||||
}
|
|
||||||
```
|
|
||||||
- **Example:**
|
|
||||||
```bash
|
|
||||||
curl -X POST "http://127.0.0.1:8020/insert_file" \
|
|
||||||
-H "Content-Type: application/json" \
|
|
||||||
-d '{"file_path": "./book.txt"}'
|
|
||||||
```
|
|
||||||
</details>
|
|
||||||
|
|
||||||
#### 4. Health Check Endpoint
|
|
||||||
<details>
|
|
||||||
<summary>Click to view Health Check endpoint details</summary>
|
|
||||||
|
|
||||||
- **URL:** `/health`
|
|
||||||
- **Method:** GET
|
|
||||||
- **Example:**
|
|
||||||
```bash
|
|
||||||
curl -X GET "http://127.0.0.1:8020/health"
|
|
||||||
```
|
|
||||||
</details>
|
|
||||||
|
|
||||||
### Configuration
|
|
||||||
|
|
||||||
The API server can be configured using environment variables:
|
|
||||||
- `RAG_DIR`: Directory for storing the RAG index (default: "index_default")
|
|
||||||
- API keys and base URLs should be configured in the code for your specific LLM and embedding model providers
|
|
||||||
|
|
||||||
### Error Handling
|
### Error Handling
|
||||||
<details>
|
<details>
|
||||||
<summary>Click to view error handling details</summary>
|
<summary>Click to view error handling details</summary>
|
||||||
@@ -989,6 +875,12 @@ def extract_queries(file_path):
|
|||||||
│ ├── lightrag_siliconcloud_demo.py
|
│ ├── lightrag_siliconcloud_demo.py
|
||||||
│ └── vram_management_demo.py
|
│ └── vram_management_demo.py
|
||||||
├── lightrag/
|
├── lightrag/
|
||||||
|
│ ├── api/
|
||||||
|
│ │ ├── lollms_lightrag_server.py
|
||||||
|
│ │ ├── ollama_lightrag_server.py
|
||||||
|
│ │ ├── openai_lightrag_server.py
|
||||||
|
│ │ ├── azure_openai_lightrag_server.py
|
||||||
|
│ │ └── requirements.txt
|
||||||
│ ├── kg/
|
│ ├── kg/
|
||||||
│ │ ├── __init__.py
|
│ │ ├── __init__.py
|
||||||
│ │ ├── oracle_impl.py
|
│ │ ├── oracle_impl.py
|
||||||
@@ -1033,7 +925,7 @@ pip install "lightrag-hku[api]"
|
|||||||
|
|
||||||
```bash
|
```bash
|
||||||
# Clone the repository
|
# Clone the repository
|
||||||
git clone https://github.com/ParisNeo/lightrag.git
|
git clone https://github.com/HKUDS/lightrag.git
|
||||||
|
|
||||||
# Change to the repository directory
|
# Change to the repository directory
|
||||||
cd lightrag
|
cd lightrag
|
||||||
@@ -1060,6 +952,27 @@ Before running any of the servers, ensure you have the corresponding backend ser
|
|||||||
- Requires valid OpenAI API credentials set in environment variables
|
- Requires valid OpenAI API credentials set in environment variables
|
||||||
- OPENAI_API_KEY must be set
|
- OPENAI_API_KEY must be set
|
||||||
|
|
||||||
|
#### For Azure OpenAI Server
|
||||||
|
Azure OpenAI API can be created using the following commands in Azure CLI (you need to install Azure CLI first from [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli)):
|
||||||
|
```bash
|
||||||
|
# Change the resource group name, location and OpenAI resource name as needed
|
||||||
|
RESOURCE_GROUP_NAME=LightRAG
|
||||||
|
LOCATION=swedencentral
|
||||||
|
RESOURCE_NAME=LightRAG-OpenAI
|
||||||
|
|
||||||
|
az login
|
||||||
|
az group create --name $RESOURCE_GROUP_NAME --location $LOCATION
|
||||||
|
az cognitiveservices account create --name $RESOURCE_NAME --resource-group $RESOURCE_GROUP_NAME --kind OpenAI --sku S0 --location swedencentral
|
||||||
|
az cognitiveservices account deployment create --resource-group $RESOURCE_GROUP_NAME --model-format OpenAI --name $RESOURCE_NAME --deployment-name gpt-4o --model-name gpt-4o --model-version "2024-08-06" --sku-capacity 100 --sku-name "Standard"
|
||||||
|
az cognitiveservices account deployment create --resource-group $RESOURCE_GROUP_NAME --model-format OpenAI --name $RESOURCE_NAME --deployment-name text-embedding-3-large --model-name text-embedding-3-large --model-version "1" --sku-capacity 80 --sku-name "Standard"
|
||||||
|
az cognitiveservices account show --name $RESOURCE_NAME --resource-group $RESOURCE_GROUP_NAME --query "properties.endpoint"
|
||||||
|
az cognitiveservices account keys list --name $RESOURCE_NAME -g $RESOURCE_GROUP_NAME
|
||||||
|
|
||||||
|
```
|
||||||
|
The output of the last command will give you the endpoint and the key for the OpenAI API. You can use these values to set the environment variables in the `.env` file.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Configuration Options
|
### Configuration Options
|
||||||
|
|
||||||
Each server has its own specific configuration options:
|
Each server has its own specific configuration options:
|
||||||
@@ -1112,6 +1025,22 @@ Each server has its own specific configuration options:
|
|||||||
| --input-dir | ./inputs | Input directory for documents |
|
| --input-dir | ./inputs | Input directory for documents |
|
||||||
| --log-level | INFO | Logging level |
|
| --log-level | INFO | Logging level |
|
||||||
|
|
||||||
|
#### OpenAI AZURE Server Options
|
||||||
|
|
||||||
|
| Parameter | Default | Description |
|
||||||
|
|-----------|---------|-------------|
|
||||||
|
| --host | 0.0.0.0 | Server host |
|
||||||
|
| --port | 9621 | Server port |
|
||||||
|
| --model | gpt-4 | OpenAI model name |
|
||||||
|
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
|
||||||
|
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||||
|
| --max-tokens | 32768 | Maximum token size |
|
||||||
|
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||||
|
| --input-dir | ./inputs | Input directory for documents |
|
||||||
|
| --enable-cache | True | Enable response cache |
|
||||||
|
| --log-level | INFO | Logging level |
|
||||||
|
|
||||||
|
|
||||||
### Example Usage
|
### Example Usage
|
||||||
|
|
||||||
#### LoLLMs RAG Server
|
#### LoLLMs RAG Server
|
||||||
@@ -1140,17 +1069,25 @@ ollama-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --em
|
|||||||
# Using GPT-4 with text-embedding-3-large
|
# Using GPT-4 with text-embedding-3-large
|
||||||
openai-lightrag-server --port 9624 --model gpt-4 --embedding-model text-embedding-3-large
|
openai-lightrag-server --port 9624 --model gpt-4 --embedding-model text-embedding-3-large
|
||||||
```
|
```
|
||||||
|
#### Azure OpenAI RAG Server
|
||||||
|
```bash
|
||||||
|
# Using GPT-4 with text-embedding-3-large
|
||||||
|
azure-openai-lightrag-server --model gpt-4o --port 8080 --working-dir ./custom_rag --embedding-model text-embedding-3-large
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
**Important Notes:**
|
**Important Notes:**
|
||||||
- For LoLLMs: Make sure the specified models are installed in your LoLLMs instance
|
- For LoLLMs: Make sure the specified models are installed in your LoLLMs instance
|
||||||
- For Ollama: Make sure the specified models are installed in your Ollama instance
|
- For Ollama: Make sure the specified models are installed in your Ollama instance
|
||||||
- For OpenAI: Ensure you have set up your OPENAI_API_KEY environment variable
|
- For OpenAI: Ensure you have set up your OPENAI_API_KEY environment variable
|
||||||
|
- For Azure OpenAI: Build and configure your server as stated in the Prequisites section
|
||||||
|
|
||||||
For help on any server, use the --help flag:
|
For help on any server, use the --help flag:
|
||||||
```bash
|
```bash
|
||||||
lollms-lightrag-server --help
|
lollms-lightrag-server --help
|
||||||
ollama-lightrag-server --help
|
ollama-lightrag-server --help
|
||||||
openai-lightrag-server --help
|
openai-lightrag-server --help
|
||||||
|
azure-openai-lightrag-server --help
|
||||||
```
|
```
|
||||||
|
|
||||||
Note: If you don't need the API functionality, you can install the base package without API support using:
|
Note: If you don't need the API functionality, you can install the base package without API support using:
|
||||||
@@ -1160,7 +1097,7 @@ pip install lightrag-hku
|
|||||||
|
|
||||||
## API Endpoints
|
## API Endpoints
|
||||||
|
|
||||||
All servers (LoLLMs, Ollama, and OpenAI) provide the same REST API endpoints for RAG functionality.
|
All servers (LoLLMs, Ollama, OpenAI and Azure OpenAI) provide the same REST API endpoints for RAG functionality.
|
||||||
|
|
||||||
### Query Endpoints
|
### Query Endpoints
|
||||||
|
|
||||||
@@ -1245,7 +1182,10 @@ For OpenAI:
|
|||||||
```bash
|
```bash
|
||||||
uvicorn openai_lightrag_server:app --reload --port 9621
|
uvicorn openai_lightrag_server:app --reload --port 9621
|
||||||
```
|
```
|
||||||
|
For Azure OpenAI:
|
||||||
|
```bash
|
||||||
|
uvicorn azure_openai_lightrag_server:app --reload --port 9621
|
||||||
|
```
|
||||||
### API Documentation
|
### API Documentation
|
||||||
|
|
||||||
When any server is running, visit:
|
When any server is running, visit:
|
||||||
@@ -1301,6 +1241,14 @@ ollama-lightrag-server --input-dir ./my_documents --port 8080
|
|||||||
openai-lightrag-server --input-dir ./my_documents --port 9624
|
openai-lightrag-server --input-dir ./my_documents --port 9624
|
||||||
```
|
```
|
||||||
|
|
||||||
|
#### Azure OpenAI RAG Server
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Start server with automatic document vectorization
|
||||||
|
# Existing documents are retrieved from cache, only new ones are processed
|
||||||
|
azure-openai-lightrag-server --input-dir ./my_documents --port 9624
|
||||||
|
```
|
||||||
|
|
||||||
**Important Notes:**
|
**Important Notes:**
|
||||||
- The `--input-dir` parameter enables automatic document processing at startup
|
- The `--input-dir` parameter enables automatic document processing at startup
|
||||||
- Documents already in the database are not re-vectorized
|
- Documents already in the database are not re-vectorized
|
||||||
|
114
examples/openai_README.md
Normal file
114
examples/openai_README.md
Normal file
@@ -0,0 +1,114 @@
|
|||||||
|
|
||||||
|
## API Server Implementation
|
||||||
|
|
||||||
|
LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests.
|
||||||
|
|
||||||
|
### Setting up the API Server
|
||||||
|
<details>
|
||||||
|
<summary>Click to expand setup instructions</summary>
|
||||||
|
|
||||||
|
1. First, ensure you have the required dependencies:
|
||||||
|
```bash
|
||||||
|
pip install fastapi uvicorn pydantic
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Set up your environment variables:
|
||||||
|
```bash
|
||||||
|
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
||||||
|
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
|
||||||
|
export OPENAI_API_KEY="Your OpenAI API key" # Required
|
||||||
|
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
||||||
|
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Run the API server:
|
||||||
|
```bash
|
||||||
|
python examples/lightrag_api_openai_compatible_demo.py
|
||||||
|
```
|
||||||
|
|
||||||
|
The server will start on `http://0.0.0.0:8020`.
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### API Endpoints
|
||||||
|
|
||||||
|
The API server provides the following endpoints:
|
||||||
|
|
||||||
|
#### 1. Query Endpoint
|
||||||
|
<details>
|
||||||
|
<summary>Click to view Query endpoint details</summary>
|
||||||
|
|
||||||
|
- **URL:** `/query`
|
||||||
|
- **Method:** POST
|
||||||
|
- **Body:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"query": "Your question here",
|
||||||
|
"mode": "hybrid", // Can be "naive", "local", "global", or "hybrid"
|
||||||
|
"only_need_context": true // Optional: Defaults to false, if true, only the referenced context will be returned, otherwise the llm answer will be returned
|
||||||
|
}
|
||||||
|
```
|
||||||
|
- **Example:**
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://127.0.0.1:8020/query" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{"query": "What are the main themes?", "mode": "hybrid"}'
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### 2. Insert Text Endpoint
|
||||||
|
<details>
|
||||||
|
<summary>Click to view Insert Text endpoint details</summary>
|
||||||
|
|
||||||
|
- **URL:** `/insert`
|
||||||
|
- **Method:** POST
|
||||||
|
- **Body:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"text": "Your text content here"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
- **Example:**
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://127.0.0.1:8020/insert" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{"text": "Content to be inserted into RAG"}'
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### 3. Insert File Endpoint
|
||||||
|
<details>
|
||||||
|
<summary>Click to view Insert File endpoint details</summary>
|
||||||
|
|
||||||
|
- **URL:** `/insert_file`
|
||||||
|
- **Method:** POST
|
||||||
|
- **Body:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"file_path": "path/to/your/file.txt"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
- **Example:**
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://127.0.0.1:8020/insert_file" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{"file_path": "./book.txt"}'
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### 4. Health Check Endpoint
|
||||||
|
<details>
|
||||||
|
<summary>Click to view Health Check endpoint details</summary>
|
||||||
|
|
||||||
|
- **URL:** `/health`
|
||||||
|
- **Method:** GET
|
||||||
|
- **Example:**
|
||||||
|
```bash
|
||||||
|
curl -X GET "http://127.0.0.1:8020/health"
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### Configuration
|
||||||
|
|
||||||
|
The API server can be configured using environment variables:
|
||||||
|
- `RAG_DIR`: Directory for storing the RAG index (default: "index_default")
|
||||||
|
- API keys and base URLs should be configured in the code for your specific LLM and embedding model providers
|
@@ -1,202 +0,0 @@
|
|||||||
|
|
||||||
# LightRAG API Server
|
|
||||||
|
|
||||||
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using OpenAI's language models.
|
|
||||||
|
|
||||||
## Features
|
|
||||||
|
|
||||||
- 🔍 Multiple search modes (naive, local, global, hybrid)
|
|
||||||
- 📡 Streaming and non-streaming responses
|
|
||||||
- 📝 Document management (insert, batch upload, clear)
|
|
||||||
- ⚙️ Highly configurable model parameters
|
|
||||||
- 📚 Support for text and file uploads
|
|
||||||
- 🔧 RESTful API with automatic documentation
|
|
||||||
- 🚀 Built with FastAPI for high performance
|
|
||||||
|
|
||||||
## Prerequisites
|
|
||||||
|
|
||||||
- Python 3.8+
|
|
||||||
- Azure OpenAI API key
|
|
||||||
- Azure OpenAI Deployments (gpt-4o, text-embedding-3-large)
|
|
||||||
- Required Python packages:
|
|
||||||
- fastapi
|
|
||||||
- uvicorn
|
|
||||||
- lightrag
|
|
||||||
- pydantic
|
|
||||||
- openai
|
|
||||||
- nest-asyncio
|
|
||||||
|
|
||||||
## Installation
|
|
||||||
If you are using Windows, you will need to download and install visual c++ build tools from [https://visualstudio.microsoft.com/visual-cpp-build-tools/](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
|
|
||||||
Make sure you install the VS 2022 C++ x64/x86 Build tools from individual components tab.
|
|
||||||
|
|
||||||
1. Clone the repository:
|
|
||||||
```bash
|
|
||||||
git clone https://github.com/ParisNeo/LightRAG.git
|
|
||||||
cd api
|
|
||||||
```
|
|
||||||
|
|
||||||
2. Install dependencies:
|
|
||||||
```bash
|
|
||||||
python -m venv venv
|
|
||||||
source venv/bin/activate
|
|
||||||
#venv\Scripts\activate for Windows
|
|
||||||
pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
3. Set up environment variables:
|
|
||||||
use the `.env` file to set the environment variables (you can copy the `.env.aoi.example` file and rename it to `.env`),
|
|
||||||
or set them manually:
|
|
||||||
```bash
|
|
||||||
export AZURE_OPENAI_API_VERSION='2024-08-01-preview'
|
|
||||||
export AZURE_OPENAI_DEPLOYMENT='gpt-4o'
|
|
||||||
export AZURE_OPENAI_API_KEY='myapikey'
|
|
||||||
export AZURE_OPENAI_ENDPOINT='https://myendpoint.openai.azure.com'
|
|
||||||
export AZURE_EMBEDDING_DEPLOYMENT='text-embedding-3-large'
|
|
||||||
export AZURE_EMBEDDING_API_VERSION='2023-05-15'
|
|
||||||
```
|
|
||||||
|
|
||||||
## Configuration
|
|
||||||
|
|
||||||
The server can be configured using command-line arguments:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python azure_openai_lightrag_server.py --help
|
|
||||||
```
|
|
||||||
|
|
||||||
Available options:
|
|
||||||
|
|
||||||
| Parameter | Default | Description |
|
|
||||||
|-----------|---------|-------------|
|
|
||||||
| --host | 0.0.0.0 | Server host |
|
|
||||||
| --port | 9621 | Server port |
|
|
||||||
| --model | gpt-4 | OpenAI model name |
|
|
||||||
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
|
|
||||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
|
||||||
| --max-tokens | 32768 | Maximum token size |
|
|
||||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
|
||||||
| --input-dir | ./inputs | Input directory for documents |
|
|
||||||
| --enable-cache | True | Enable response cache |
|
|
||||||
| --log-level | INFO | Logging level |
|
|
||||||
|
|
||||||
## Quick Start
|
|
||||||
|
|
||||||
1. Basic usage with default settings:
|
|
||||||
```bash
|
|
||||||
python azure_openai_lightrag_server.py
|
|
||||||
```
|
|
||||||
|
|
||||||
2. Custom configuration:
|
|
||||||
```bash
|
|
||||||
python azure_openai_lightrag_server.py --model gpt-4o --port 8080 --working-dir ./custom_rag
|
|
||||||
```
|
|
||||||
|
|
||||||
## API Endpoints
|
|
||||||
|
|
||||||
### Query Endpoints
|
|
||||||
|
|
||||||
#### POST /query
|
|
||||||
Query the RAG system with options for different search modes.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
curl -X POST "http://localhost:9621/query" \
|
|
||||||
-H "Content-Type: application/json" \
|
|
||||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
|
||||||
```
|
|
||||||
|
|
||||||
#### POST /query/stream
|
|
||||||
Stream responses from the RAG system.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
curl -X POST "http://localhost:9621/query/stream" \
|
|
||||||
-H "Content-Type: application/json" \
|
|
||||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
|
||||||
```
|
|
||||||
|
|
||||||
### Document Management Endpoints
|
|
||||||
|
|
||||||
#### POST /documents/text
|
|
||||||
Insert text directly into the RAG system.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
curl -X POST "http://localhost:9621/documents/text" \
|
|
||||||
-H "Content-Type: application/json" \
|
|
||||||
-d '{"text": "Your text content here", "description": "Optional description"}'
|
|
||||||
```
|
|
||||||
|
|
||||||
#### POST /documents/file
|
|
||||||
Upload a single file to the RAG system.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
curl -X POST "http://localhost:9621/documents/file" \
|
|
||||||
-F "file=@/path/to/your/document.txt" \
|
|
||||||
-F "description=Optional description"
|
|
||||||
```
|
|
||||||
|
|
||||||
#### POST /documents/batch
|
|
||||||
Upload multiple files at once.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
curl -X POST "http://localhost:9621/documents/batch" \
|
|
||||||
-F "files=@/path/to/doc1.txt" \
|
|
||||||
-F "files=@/path/to/doc2.txt"
|
|
||||||
```
|
|
||||||
|
|
||||||
#### DELETE /documents
|
|
||||||
Clear all documents from the RAG system.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
curl -X DELETE "http://localhost:9621/documents"
|
|
||||||
```
|
|
||||||
|
|
||||||
### Utility Endpoints
|
|
||||||
|
|
||||||
#### GET /health
|
|
||||||
Check server health and configuration.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
curl "http://localhost:9621/health"
|
|
||||||
```
|
|
||||||
|
|
||||||
## Development
|
|
||||||
|
|
||||||
### Running in Development Mode
|
|
||||||
|
|
||||||
```bash
|
|
||||||
uvicorn azure_openai_lightrag_server:app --reload --port 9621
|
|
||||||
```
|
|
||||||
|
|
||||||
### API Documentation
|
|
||||||
|
|
||||||
When the server is running, visit:
|
|
||||||
- Swagger UI: http://localhost:9621/docs
|
|
||||||
- ReDoc: http://localhost:9621/redoc
|
|
||||||
|
|
||||||
## Deployment
|
|
||||||
Azure OpenAI API can be created using the following commands in Azure CLI (you need to install Azure CLI first from [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli)):
|
|
||||||
```bash
|
|
||||||
# Change the resource group name, location and OpenAI resource name as needed
|
|
||||||
RESOURCE_GROUP_NAME=LightRAG
|
|
||||||
LOCATION=swedencentral
|
|
||||||
RESOURCE_NAME=LightRAG-OpenAI
|
|
||||||
|
|
||||||
az login
|
|
||||||
az group create --name $RESOURCE_GROUP_NAME --location $LOCATION
|
|
||||||
az cognitiveservices account create --name $RESOURCE_NAME --resource-group $RESOURCE_GROUP_NAME --kind OpenAI --sku S0 --location swedencentral
|
|
||||||
az cognitiveservices account deployment create --resource-group $RESOURCE_GROUP_NAME --model-format OpenAI --name $RESOURCE_NAME --deployment-name gpt-4o --model-name gpt-4o --model-version "2024-08-06" --sku-capacity 100 --sku-name "Standard"
|
|
||||||
az cognitiveservices account deployment create --resource-group $RESOURCE_GROUP_NAME --model-format OpenAI --name $RESOURCE_NAME --deployment-name text-embedding-3-large --model-name text-embedding-3-large --model-version "1" --sku-capacity 80 --sku-name "Standard"
|
|
||||||
az cognitiveservices account show --name $RESOURCE_NAME --resource-group $RESOURCE_GROUP_NAME --query "properties.endpoint"
|
|
||||||
az cognitiveservices account keys list --name $RESOURCE_NAME -g $RESOURCE_GROUP_NAME
|
|
||||||
|
|
||||||
```
|
|
||||||
The output of the last command will give you the endpoint and the key for the OpenAI API. You can use these values to set the environment variables in the `.env` file.
|
|
||||||
|
|
||||||
## License
|
|
||||||
|
|
||||||
This project is licensed under the MIT License - see the LICENSE file for details.
|
|
||||||
|
|
||||||
## Acknowledgments
|
|
||||||
|
|
||||||
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
|
||||||
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
|
||||||
- Powered by [OpenAI](https://openai.com/) for language model inference
|
|
@@ -435,9 +435,13 @@ def create_app(args):
|
|||||||
return app
|
return app
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
def main():
|
||||||
args = parse_args()
|
args = parse_args()
|
||||||
import uvicorn
|
import uvicorn
|
||||||
|
|
||||||
app = create_app(args)
|
app = create_app(args)
|
||||||
uvicorn.run(app, host=args.host, port=args.port)
|
uvicorn.run(app, host=args.host, port=args.port)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
1
setup.py
1
setup.py
@@ -103,6 +103,7 @@ setuptools.setup(
|
|||||||
"lollms-lightrag-server=lightrag.api.lollms_lightrag_server:main [api]",
|
"lollms-lightrag-server=lightrag.api.lollms_lightrag_server:main [api]",
|
||||||
"ollama-lightrag-server=lightrag.api.ollama_lightrag_server:main [api]",
|
"ollama-lightrag-server=lightrag.api.ollama_lightrag_server:main [api]",
|
||||||
"openai-lightrag-server=lightrag.api.openai_lightrag_server:main [api]",
|
"openai-lightrag-server=lightrag.api.openai_lightrag_server:main [api]",
|
||||||
|
"azure-openai-lightrag-server=lightrag.api.azure_openai_lightrag_server:main [api]",
|
||||||
],
|
],
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
|
Reference in New Issue
Block a user