@@ -793,85 +793,97 @@ class LightRAG:
|
||||
]
|
||||
|
||||
logger.info(f"Number of batches to process: {len(docs_batches)}.")
|
||||
|
||||
batches: list[Any] = []
|
||||
# 3. iterate over batches
|
||||
for batch_idx, docs_batch in enumerate(docs_batches):
|
||||
logger.info(
|
||||
f"Start processing batch {batch_idx + 1} of {len(docs_batches)}."
|
||||
)
|
||||
# 4. iterate over batch
|
||||
for doc_id_processing_status in docs_batch:
|
||||
doc_id, status_doc = doc_id_processing_status
|
||||
# Update status in processing
|
||||
doc_status_id = compute_mdhash_id(status_doc.content, prefix="doc-")
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_status_id: {
|
||||
"status": DocStatus.PROCESSING,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
}
|
||||
}
|
||||
)
|
||||
# Generate chunks from document
|
||||
chunks: dict[str, Any] = {
|
||||
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
||||
**dp,
|
||||
"full_doc_id": doc_id,
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
status_doc.content,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
self.chunk_overlap_token_size,
|
||||
self.chunk_token_size,
|
||||
self.tiktoken_model_name,
|
||||
)
|
||||
}
|
||||
|
||||
# Process document (text chunks and full docs) in parallel
|
||||
tasks = [
|
||||
self.chunks_vdb.upsert(chunks),
|
||||
self._process_entity_relation_graph(chunks),
|
||||
self.full_docs.upsert({doc_id: {"content": status_doc.content}}),
|
||||
self.text_chunks.upsert(chunks),
|
||||
self.doc_status.upsert(
|
||||
{
|
||||
doc_status_id: {
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
),
|
||||
]
|
||||
try:
|
||||
await asyncio.gather(*tasks)
|
||||
await self._insert_done()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process document {doc_id}: {str(e)}")
|
||||
async def batch(
|
||||
batch_idx: int,
|
||||
docs_batch: list[tuple[str, DocProcessingStatus]],
|
||||
size_batch: int,
|
||||
) -> None:
|
||||
logger.info(f"Start processing batch {batch_idx + 1} of {size_batch}.")
|
||||
# 4. iterate over batch
|
||||
for doc_id_processing_status in docs_batch:
|
||||
doc_id, status_doc = doc_id_processing_status
|
||||
# Update status in processing
|
||||
doc_status_id = compute_mdhash_id(status_doc.content, prefix="doc-")
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_status_id: {
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"status": DocStatus.PROCESSING,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
)
|
||||
continue
|
||||
logger.info(f"Completed batch {batch_idx + 1} of {len(docs_batches)}.")
|
||||
# Generate chunks from document
|
||||
chunks: dict[str, Any] = {
|
||||
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
||||
**dp,
|
||||
"full_doc_id": doc_id,
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
status_doc.content,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
self.chunk_overlap_token_size,
|
||||
self.chunk_token_size,
|
||||
self.tiktoken_model_name,
|
||||
)
|
||||
}
|
||||
|
||||
# Process document (text chunks and full docs) in parallel
|
||||
tasks = [
|
||||
self.chunks_vdb.upsert(chunks),
|
||||
self._process_entity_relation_graph(chunks),
|
||||
self.full_docs.upsert(
|
||||
{doc_id: {"content": status_doc.content}}
|
||||
),
|
||||
self.text_chunks.upsert(chunks),
|
||||
self.doc_status.upsert(
|
||||
{
|
||||
doc_status_id: {
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
),
|
||||
]
|
||||
try:
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process document {doc_id}: {str(e)}")
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_status_id: {
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
)
|
||||
continue
|
||||
logger.info(f"Completed batch {batch_idx + 1} of {len(docs_batches)}.")
|
||||
|
||||
batches.append(batch(batch_idx, docs_batch, len(docs_batches)))
|
||||
|
||||
await asyncio.gather(*batches)
|
||||
await self._insert_done()
|
||||
|
||||
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
|
||||
try:
|
||||
|
Reference in New Issue
Block a user