less comments

This commit is contained in:
omdivyatej
2025-03-23 21:42:56 +05:30
parent 3522da1b21
commit f87c235a4c

View File

@@ -3,22 +3,17 @@ import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed
from lightrag.kg.shared_storage import initialize_pipeline_status
from lightrag.utils import setup_logger
setup_logger("lightrag", level="INFO")
WORKING_DIR = "./all_modes_demo"
WORKING_DIR = "./lightrag_demo"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def initialize_rag():
# Initialize LightRAG with a base model (gpt-4o-mini)
rag = LightRAG(
working_dir=WORKING_DIR,
embedding_func=openai_embed,
llm_model_func=gpt_4o_mini_complete, # Default model for most queries
llm_model_func=gpt_4o_mini_complete, # Default model for queries
)
await rag.initialize_storages()
@@ -26,7 +21,6 @@ async def initialize_rag():
return rag
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
@@ -34,60 +28,63 @@ def main():
# Load the data
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Example query
query_text = "What are the main themes in this story?"
# Demonstrate using default model (gpt-4o-mini) for all modes
print("\n===== Default Model (gpt-4o-mini) =====")
for mode in ["local", "global", "hybrid", "naive", "mix"]:
print(f"\n--- {mode.upper()} mode with default model ---")
response = rag.query(
query_text,
param=QueryParam(mode=mode)
# Query with naive mode (default model)
print("--- NAIVE mode ---")
print(
rag.query(
"What are the main themes in this story?",
param=QueryParam(mode="naive")
)
print(response)
# Demonstrate using custom model (gpt-4o) for all modes
print("\n===== Custom Model (gpt-4o) =====")
for mode in ["local", "global", "hybrid", "naive", "mix"]:
print(f"\n--- {mode.upper()} mode with custom model ---")
response = rag.query(
query_text,
)
# Query with local mode (default model)
print("\n--- LOCAL mode ---")
print(
rag.query(
"What are the main themes in this story?",
param=QueryParam(mode="local")
)
)
# Query with global mode (default model)
print("\n--- GLOBAL mode ---")
print(
rag.query(
"What are the main themes in this story?",
param=QueryParam(mode="global")
)
)
# Query with hybrid mode (default model)
print("\n--- HYBRID mode ---")
print(
rag.query(
"What are the main themes in this story?",
param=QueryParam(mode="hybrid")
)
)
# Query with mix mode (default model)
print("\n--- MIX mode ---")
print(
rag.query(
"What are the main themes in this story?",
param=QueryParam(mode="mix")
)
)
# Query with a custom model (gpt-4o) for a more complex question
print("\n--- Using custom model for complex analysis ---")
print(
rag.query(
"How does the character development reflect Victorian-era attitudes?",
param=QueryParam(
mode=mode,
model_func=gpt_4o_complete # Override with more capable model
mode="global",
model_func=gpt_4o_complete # Override default model with more capable one
)
)
print(response)
# Mixed approach - use different models for different modes
print("\n===== Strategic Model Selection =====")
# Complex analytical question
complex_query = "How does the character development in the story reflect Victorian-era social values?"
# Use default model for simpler modes
print("\n--- NAIVE mode with default model (suitable for simple retrieval) ---")
response1 = rag.query(
complex_query,
param=QueryParam(mode="naive") # Use default model for basic retrieval
)
print(response1)
# Use more capable model for complex modes
print("\n--- HYBRID mode with more capable model (for complex analysis) ---")
response2 = rag.query(
complex_query,
param=QueryParam(
mode="hybrid",
model_func=gpt_4o_complete # Use more capable model for complex analysis
)
)
print(response2)
if __name__ == "__main__":
main()