pre-commit run --all-files
This commit is contained in:
@@ -24,22 +24,25 @@ from fastapi.middleware.cors import CORSMiddleware
|
||||
from starlette.status import HTTP_403_FORBIDDEN
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
def estimate_tokens(text: str) -> int:
|
||||
"""Estimate the number of tokens in text
|
||||
Chinese characters: approximately 1.5 tokens per character
|
||||
English characters: approximately 0.25 tokens per character
|
||||
"""
|
||||
# Use regex to match Chinese and non-Chinese characters separately
|
||||
chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
|
||||
non_chinese_chars = len(re.findall(r'[^\u4e00-\u9fff]', text))
|
||||
|
||||
chinese_chars = len(re.findall(r"[\u4e00-\u9fff]", text))
|
||||
non_chinese_chars = len(re.findall(r"[^\u4e00-\u9fff]", text))
|
||||
|
||||
# Calculate estimated token count
|
||||
tokens = chinese_chars * 1.5 + non_chinese_chars * 0.25
|
||||
|
||||
|
||||
return int(tokens)
|
||||
|
||||
|
||||
# Constants for model information
|
||||
LIGHTRAG_NAME = "lightrag"
|
||||
LIGHTRAG_TAG = "latest"
|
||||
@@ -48,6 +51,7 @@ LIGHTRAG_SIZE = 7365960935
|
||||
LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z"
|
||||
LIGHTRAG_DIGEST = "sha256:lightrag"
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
@@ -61,6 +65,7 @@ async def llm_model_func(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def get_default_host(binding_type: str) -> str:
|
||||
default_hosts = {
|
||||
"ollama": "http://m4.lan.znipower.com:11434",
|
||||
@@ -245,27 +250,32 @@ class SearchMode(str, Enum):
|
||||
hybrid = "hybrid"
|
||||
mix = "mix"
|
||||
|
||||
|
||||
# Ollama API compatible models
|
||||
class OllamaMessage(BaseModel):
|
||||
role: str
|
||||
content: str
|
||||
images: Optional[List[str]] = None
|
||||
|
||||
|
||||
class OllamaChatRequest(BaseModel):
|
||||
model: str = LIGHTRAG_MODEL
|
||||
messages: List[OllamaMessage]
|
||||
stream: bool = True # Default to streaming mode
|
||||
options: Optional[Dict[str, Any]] = None
|
||||
|
||||
|
||||
class OllamaChatResponse(BaseModel):
|
||||
model: str
|
||||
created_at: str
|
||||
message: OllamaMessage
|
||||
done: bool
|
||||
|
||||
|
||||
class OllamaVersionResponse(BaseModel):
|
||||
version: str
|
||||
|
||||
|
||||
class OllamaModelDetails(BaseModel):
|
||||
parent_model: str
|
||||
format: str
|
||||
@@ -274,6 +284,7 @@ class OllamaModelDetails(BaseModel):
|
||||
parameter_size: str
|
||||
quantization_level: str
|
||||
|
||||
|
||||
class OllamaModel(BaseModel):
|
||||
name: str
|
||||
model: str
|
||||
@@ -282,9 +293,11 @@ class OllamaModel(BaseModel):
|
||||
modified_at: str
|
||||
details: OllamaModelDetails
|
||||
|
||||
|
||||
class OllamaTagResponse(BaseModel):
|
||||
models: List[OllamaModel]
|
||||
|
||||
|
||||
# Original LightRAG models
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
@@ -292,9 +305,11 @@ class QueryRequest(BaseModel):
|
||||
stream: bool = False
|
||||
only_need_context: bool = False
|
||||
|
||||
|
||||
class QueryResponse(BaseModel):
|
||||
response: str
|
||||
|
||||
|
||||
class InsertTextRequest(BaseModel):
|
||||
text: str
|
||||
description: Optional[str] = None
|
||||
@@ -395,7 +410,9 @@ def create_app(args):
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
texts, embed_model="bge-m3:latest", host="http://m4.lan.znipower.com:11434"
|
||||
texts,
|
||||
embed_model="bge-m3:latest",
|
||||
host="http://m4.lan.znipower.com:11434",
|
||||
),
|
||||
),
|
||||
)
|
||||
@@ -493,7 +510,7 @@ def create_app(args):
|
||||
# If response is a string (e.g. cache hit), return directly
|
||||
if isinstance(response, str):
|
||||
return QueryResponse(response=response)
|
||||
|
||||
|
||||
# If it's an async generator, decide whether to stream based on stream parameter
|
||||
if request.stream:
|
||||
result = ""
|
||||
@@ -546,8 +563,8 @@ def create_app(args):
|
||||
"Access-Control-Allow-Origin": "*",
|
||||
"Access-Control-Allow-Methods": "POST, OPTIONS",
|
||||
"Access-Control-Allow-Headers": "Content-Type",
|
||||
"X-Accel-Buffering": "no" # 禁用 Nginx 缓冲
|
||||
}
|
||||
"X-Accel-Buffering": "no", # 禁用 Nginx 缓冲
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -652,29 +669,29 @@ def create_app(args):
|
||||
@app.get("/api/version")
|
||||
async def get_version():
|
||||
"""Get Ollama version information"""
|
||||
return OllamaVersionResponse(
|
||||
version="0.5.4"
|
||||
)
|
||||
return OllamaVersionResponse(version="0.5.4")
|
||||
|
||||
@app.get("/api/tags")
|
||||
async def get_tags():
|
||||
"""Get available models"""
|
||||
return OllamaTagResponse(
|
||||
models=[{
|
||||
"name": LIGHTRAG_MODEL,
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"size": LIGHTRAG_SIZE,
|
||||
"digest": LIGHTRAG_DIGEST,
|
||||
"modified_at": LIGHTRAG_CREATED_AT,
|
||||
"details": {
|
||||
"parent_model": "",
|
||||
"format": "gguf",
|
||||
"family": LIGHTRAG_NAME,
|
||||
"families": [LIGHTRAG_NAME],
|
||||
"parameter_size": "13B",
|
||||
"quantization_level": "Q4_0"
|
||||
}
|
||||
}]
|
||||
models=[
|
||||
{
|
||||
"name": LIGHTRAG_MODEL,
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"size": LIGHTRAG_SIZE,
|
||||
"digest": LIGHTRAG_DIGEST,
|
||||
"modified_at": LIGHTRAG_CREATED_AT,
|
||||
"details": {
|
||||
"parent_model": "",
|
||||
"format": "gguf",
|
||||
"family": LIGHTRAG_NAME,
|
||||
"families": [LIGHTRAG_NAME],
|
||||
"parameter_size": "13B",
|
||||
"quantization_level": "Q4_0",
|
||||
},
|
||||
}
|
||||
]
|
||||
)
|
||||
|
||||
def parse_query_mode(query: str) -> tuple[str, SearchMode]:
|
||||
@@ -686,15 +703,15 @@ def create_app(args):
|
||||
"/global ": SearchMode.global_, # global_ is used because 'global' is a Python keyword
|
||||
"/naive ": SearchMode.naive,
|
||||
"/hybrid ": SearchMode.hybrid,
|
||||
"/mix ": SearchMode.mix
|
||||
"/mix ": SearchMode.mix,
|
||||
}
|
||||
|
||||
|
||||
for prefix, mode in mode_map.items():
|
||||
if query.startswith(prefix):
|
||||
# After removing prefix an leading spaces
|
||||
cleaned_query = query[len(prefix):].lstrip()
|
||||
cleaned_query = query[len(prefix) :].lstrip()
|
||||
return cleaned_query, mode
|
||||
|
||||
|
||||
return query, SearchMode.hybrid
|
||||
|
||||
@app.post("/api/chat")
|
||||
@@ -705,32 +722,29 @@ def create_app(args):
|
||||
messages = request.messages
|
||||
if not messages:
|
||||
raise HTTPException(status_code=400, detail="No messages provided")
|
||||
|
||||
|
||||
# Get the last message as query
|
||||
query = messages[-1].content
|
||||
|
||||
|
||||
# 解析查询模式
|
||||
cleaned_query, mode = parse_query_mode(query)
|
||||
|
||||
|
||||
# 开始计时
|
||||
start_time = time.time_ns()
|
||||
|
||||
|
||||
# 计算输入token数量
|
||||
prompt_tokens = estimate_tokens(cleaned_query)
|
||||
|
||||
|
||||
# 调用RAG进行查询
|
||||
query_param = QueryParam(
|
||||
mode=mode,
|
||||
stream=request.stream,
|
||||
only_need_context=False
|
||||
mode=mode, stream=request.stream, only_need_context=False
|
||||
)
|
||||
|
||||
|
||||
if request.stream:
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
|
||||
response = await rag.aquery( # Need await to get async generator
|
||||
cleaned_query,
|
||||
param=query_param
|
||||
cleaned_query, param=query_param
|
||||
)
|
||||
|
||||
async def stream_generator():
|
||||
@@ -738,33 +752,37 @@ def create_app(args):
|
||||
first_chunk_time = None
|
||||
last_chunk_time = None
|
||||
total_response = ""
|
||||
|
||||
|
||||
# Ensure response is an async generator
|
||||
if isinstance(response, str):
|
||||
# If it's a string, send in two parts
|
||||
first_chunk_time = time.time_ns()
|
||||
last_chunk_time = first_chunk_time
|
||||
total_response = response
|
||||
|
||||
|
||||
# 第一次发送查询内容
|
||||
data = {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
"created_at": LIGHTRAG_CREATED_AT,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"role": "assistant",
|
||||
"content": response,
|
||||
"images": None
|
||||
"images": None,
|
||||
},
|
||||
"done": False
|
||||
"done": False,
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
|
||||
|
||||
# 计算各项指标
|
||||
completion_tokens = estimate_tokens(total_response)
|
||||
total_time = last_chunk_time - start_time # 总时间
|
||||
prompt_eval_time = first_chunk_time - start_time # 首个响应之前的时间
|
||||
eval_time = last_chunk_time - first_chunk_time # 生成响应的时间
|
||||
|
||||
prompt_eval_time = (
|
||||
first_chunk_time - start_time
|
||||
) # 首个响应之前的时间
|
||||
eval_time = (
|
||||
last_chunk_time - first_chunk_time
|
||||
) # 生成响应的时间
|
||||
|
||||
# 第二次发送统计信息
|
||||
data = {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
@@ -775,7 +793,7 @@ def create_app(args):
|
||||
"prompt_eval_count": prompt_tokens, # 输入token数
|
||||
"prompt_eval_duration": prompt_eval_time, # 首个响应之前的时间
|
||||
"eval_count": completion_tokens, # 输出token数
|
||||
"eval_duration": eval_time # 生成响应的时间
|
||||
"eval_duration": eval_time, # 生成响应的时间
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
else:
|
||||
@@ -785,10 +803,10 @@ def create_app(args):
|
||||
# 记录第一个chunk的时间
|
||||
if first_chunk_time is None:
|
||||
first_chunk_time = time.time_ns()
|
||||
|
||||
|
||||
# 更新最后一个chunk的时间
|
||||
last_chunk_time = time.time_ns()
|
||||
|
||||
|
||||
# 累积响应内容
|
||||
total_response += chunk
|
||||
data = {
|
||||
@@ -797,18 +815,22 @@ def create_app(args):
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": chunk,
|
||||
"images": None
|
||||
"images": None,
|
||||
},
|
||||
"done": False
|
||||
"done": False,
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
|
||||
|
||||
# 计算各项指标
|
||||
completion_tokens = estimate_tokens(total_response)
|
||||
total_time = last_chunk_time - start_time # 总时间
|
||||
prompt_eval_time = first_chunk_time - start_time # 首个响应之前的时间
|
||||
eval_time = last_chunk_time - first_chunk_time # 生成响应的时间
|
||||
|
||||
prompt_eval_time = (
|
||||
first_chunk_time - start_time
|
||||
) # 首个响应之前的时间
|
||||
eval_time = (
|
||||
last_chunk_time - first_chunk_time
|
||||
) # 生成响应的时间
|
||||
|
||||
# 发送完成标记,包含性能统计信息
|
||||
data = {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
@@ -819,14 +841,14 @@ def create_app(args):
|
||||
"prompt_eval_count": prompt_tokens, # 输入token数
|
||||
"prompt_eval_duration": prompt_eval_time, # 首个响应之前的时间
|
||||
"eval_count": completion_tokens, # 输出token数
|
||||
"eval_duration": eval_time # 生成响应的时间
|
||||
"eval_duration": eval_time, # 生成响应的时间
|
||||
}
|
||||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||||
return # 确保生成器在发送完成标记后立即结束
|
||||
except Exception as e:
|
||||
logging.error(f"Error in stream_generator: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
return StreamingResponse(
|
||||
stream_generator(),
|
||||
media_type="application/x-ndjson",
|
||||
@@ -836,28 +858,25 @@ def create_app(args):
|
||||
"Content-Type": "application/x-ndjson",
|
||||
"Access-Control-Allow-Origin": "*",
|
||||
"Access-Control-Allow-Methods": "POST, OPTIONS",
|
||||
"Access-Control-Allow-Headers": "Content-Type"
|
||||
}
|
||||
"Access-Control-Allow-Headers": "Content-Type",
|
||||
},
|
||||
)
|
||||
else:
|
||||
# 非流式响应
|
||||
first_chunk_time = time.time_ns()
|
||||
response_text = await rag.aquery(
|
||||
cleaned_query,
|
||||
param=query_param
|
||||
)
|
||||
response_text = await rag.aquery(cleaned_query, param=query_param)
|
||||
last_chunk_time = time.time_ns()
|
||||
|
||||
|
||||
# 确保响应不为空
|
||||
if not response_text:
|
||||
response_text = "No response generated"
|
||||
|
||||
|
||||
# 计算各项指标
|
||||
completion_tokens = estimate_tokens(str(response_text))
|
||||
total_time = last_chunk_time - start_time # 总时间
|
||||
prompt_eval_time = first_chunk_time - start_time # 首个响应之前的时间
|
||||
eval_time = last_chunk_time - first_chunk_time # 生成响应的时间
|
||||
|
||||
|
||||
# 构造响应,包含性能统计信息
|
||||
return {
|
||||
"model": LIGHTRAG_MODEL,
|
||||
@@ -865,7 +884,7 @@ def create_app(args):
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": str(response_text), # 确保转换为字符串
|
||||
"images": None
|
||||
"images": None,
|
||||
},
|
||||
"done": True,
|
||||
"total_duration": total_time, # 总时间
|
||||
@@ -873,7 +892,7 @@ def create_app(args):
|
||||
"prompt_eval_count": prompt_tokens, # 输入token数
|
||||
"prompt_eval_duration": prompt_eval_time, # 首个响应之前的时间
|
||||
"eval_count": completion_tokens, # 输出token数
|
||||
"eval_duration": eval_time # 生成响应的时间
|
||||
"eval_duration": eval_time, # 生成响应的时间
|
||||
}
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
Reference in New Issue
Block a user