Merge branch 'main' into select-datastore-in-api-server
This commit is contained in:
22
README.md
22
README.md
@@ -85,7 +85,7 @@ Use the below Python snippet (in a script) to initialize LightRAG and perform qu
|
||||
```python
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
@@ -95,12 +95,12 @@ from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
embedding_func=openai_embed,
|
||||
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
@@ -355,16 +355,26 @@ In order to run this experiment on low RAM GPU you should select small model and
|
||||
```python
|
||||
class QueryParam:
|
||||
mode: Literal["local", "global", "hybrid", "naive", "mix"] = "global"
|
||||
"""Specifies the retrieval mode:
|
||||
- "local": Focuses on context-dependent information.
|
||||
- "global": Utilizes global knowledge.
|
||||
- "hybrid": Combines local and global retrieval methods.
|
||||
- "naive": Performs a basic search without advanced techniques.
|
||||
- "mix": Integrates knowledge graph and vector retrieval.
|
||||
"""
|
||||
only_need_context: bool = False
|
||||
"""If True, only returns the retrieved context without generating a response."""
|
||||
response_type: str = "Multiple Paragraphs"
|
||||
# Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode.
|
||||
"""Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'."""
|
||||
top_k: int = 60
|
||||
# Number of tokens for the original chunks.
|
||||
"""Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
|
||||
max_token_for_text_unit: int = 4000
|
||||
# Number of tokens for the relationship descriptions
|
||||
"""Maximum number of tokens allowed for each retrieved text chunk."""
|
||||
max_token_for_global_context: int = 4000
|
||||
# Number of tokens for the entity descriptions
|
||||
"""Maximum number of tokens allocated for relationship descriptions in global retrieval."""
|
||||
max_token_for_local_context: int = 4000
|
||||
"""Maximum number of tokens allocated for entity descriptions in local retrieval."""
|
||||
...
|
||||
```
|
||||
|
||||
> default value of Top_k can be change by environment variables TOP_K.
|
||||
|
@@ -24,6 +24,10 @@ EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
BASE_URL = os.environ.get("BASE_URL", "https://api.openai.com/v1")
|
||||
print(f"BASE_URL: {BASE_URL}")
|
||||
API_KEY = os.environ.get("API_KEY", "xxxxxxxx")
|
||||
print(f"API_KEY: {API_KEY}")
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
@@ -36,10 +40,12 @@ async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
LLM_MODEL,
|
||||
prompt,
|
||||
model=LLM_MODEL,
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
base_url=BASE_URL,
|
||||
api_key=API_KEY,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -49,8 +55,10 @@ async def llm_model_func(
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embed(
|
||||
texts,
|
||||
texts=texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
base_url=BASE_URL,
|
||||
api_key=API_KEY,
|
||||
)
|
||||
|
||||
|
||||
|
101
examples/lightrag_api_openai_compatible_demo_simplified.py
Normal file
101
examples/lightrag_api_openai_compatible_demo_simplified.py
Normal file
@@ -0,0 +1,101 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
DEFAULT_RAG_DIR = "index_default"
|
||||
|
||||
# Configure working directory
|
||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
|
||||
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-small")
|
||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
BASE_URL = os.environ.get("BASE_URL", "https://api.openai.com/v1")
|
||||
print(f"BASE_URL: {BASE_URL}")
|
||||
API_KEY = os.environ.get("API_KEY", "xxxxxxxx")
|
||||
print(f"API_KEY: {API_KEY}")
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
# LLM model function
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
model=LLM_MODEL,
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
base_url=BASE_URL,
|
||||
api_key=API_KEY,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
# Embedding function
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embed(
|
||||
texts=texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
base_url=BASE_URL,
|
||||
api_key=API_KEY,
|
||||
)
|
||||
|
||||
|
||||
async def get_embedding_dim():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
embedding_dim = embedding.shape[1]
|
||||
print(f"{embedding_dim=}")
|
||||
return embedding_dim
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -10,6 +10,7 @@ if not os.path.exists(WORKING_DIR):
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
embedding_func=openai_embed,
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
# llm_model_func=gpt_4o_complete
|
||||
)
|
||||
|
@@ -1,5 +1,5 @@
|
||||
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
||||
|
||||
__version__ = "1.1.5"
|
||||
__version__ = "1.1.6"
|
||||
__author__ = "Zirui Guo"
|
||||
__url__ = "https://github.com/HKUDS/LightRAG"
|
||||
|
@@ -27,30 +27,54 @@ T = TypeVar("T")
|
||||
|
||||
@dataclass
|
||||
class QueryParam:
|
||||
"""Configuration parameters for query execution in LightRAG."""
|
||||
|
||||
mode: Literal["local", "global", "hybrid", "naive", "mix"] = "global"
|
||||
"""Specifies the retrieval mode:
|
||||
- "local": Focuses on context-dependent information.
|
||||
- "global": Utilizes global knowledge.
|
||||
- "hybrid": Combines local and global retrieval methods.
|
||||
- "naive": Performs a basic search without advanced techniques.
|
||||
- "mix": Integrates knowledge graph and vector retrieval.
|
||||
"""
|
||||
|
||||
only_need_context: bool = False
|
||||
"""If True, only returns the retrieved context without generating a response."""
|
||||
|
||||
only_need_prompt: bool = False
|
||||
"""If True, only returns the generated prompt without producing a response."""
|
||||
|
||||
response_type: str = "Multiple Paragraphs"
|
||||
"""Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'."""
|
||||
|
||||
stream: bool = False
|
||||
# Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode.
|
||||
"""If True, enables streaming output for real-time responses."""
|
||||
|
||||
top_k: int = int(os.getenv("TOP_K", "60"))
|
||||
# Number of document chunks to retrieve.
|
||||
# top_n: int = 10
|
||||
# Number of tokens for the original chunks.
|
||||
"""Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
|
||||
|
||||
max_token_for_text_unit: int = 4000
|
||||
# Number of tokens for the relationship descriptions
|
||||
"""Maximum number of tokens allowed for each retrieved text chunk."""
|
||||
|
||||
max_token_for_global_context: int = 4000
|
||||
# Number of tokens for the entity descriptions
|
||||
"""Maximum number of tokens allocated for relationship descriptions in global retrieval."""
|
||||
|
||||
max_token_for_local_context: int = 4000
|
||||
"""Maximum number of tokens allocated for entity descriptions in local retrieval."""
|
||||
|
||||
hl_keywords: list[str] = field(default_factory=list)
|
||||
"""List of high-level keywords to prioritize in retrieval."""
|
||||
|
||||
ll_keywords: list[str] = field(default_factory=list)
|
||||
# Conversation history support
|
||||
conversation_history: list[dict[str, str]] = field(
|
||||
default_factory=list
|
||||
) # Format: [{"role": "user/assistant", "content": "message"}]
|
||||
history_turns: int = (
|
||||
3 # Number of complete conversation turns (user-assistant pairs) to consider
|
||||
)
|
||||
"""List of low-level keywords to refine retrieval focus."""
|
||||
|
||||
conversation_history: list[dict[str, Any]] = field(default_factory=list)
|
||||
"""Stores past conversation history to maintain context.
|
||||
Format: [{"role": "user/assistant", "content": "message"}].
|
||||
"""
|
||||
|
||||
history_turns: int = 3
|
||||
"""Number of complete conversation turns (user-assistant pairs) to consider in the response context."""
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -202,3 +226,7 @@ class DocStatusStorage(BaseKVStorage):
|
||||
async def get_pending_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all pending documents"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def update_doc_status(self, data: dict[str, Any]) -> None:
|
||||
"""Updates the status of a document. By default, it calls upsert."""
|
||||
await self.upsert(data)
|
||||
|
@@ -109,6 +109,22 @@ class JsonDocStatusStorage(DocStatusStorage):
|
||||
if v["status"] == DocStatus.PENDING
|
||||
}
|
||||
|
||||
async def get_processed_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all processed documents"""
|
||||
return {
|
||||
k: DocProcessingStatus(**v)
|
||||
for k, v in self._data.items()
|
||||
if v["status"] == DocStatus.PROCESSED
|
||||
}
|
||||
|
||||
async def get_processing_docs(self) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all processing documents"""
|
||||
return {
|
||||
k: DocProcessingStatus(**v)
|
||||
for k, v in self._data.items()
|
||||
if v["status"] == DocStatus.PROCESSING
|
||||
}
|
||||
|
||||
async def index_done_callback(self):
|
||||
"""Save data to file after indexing"""
|
||||
write_json(self._data, self._file_name)
|
||||
|
@@ -530,6 +530,32 @@ class PGDocStatusStorage(DocStatusStorage):
|
||||
)
|
||||
return data
|
||||
|
||||
async def update_doc_status(self, data: dict[str, dict]) -> None:
|
||||
"""
|
||||
Updates only the document status, chunk count, and updated timestamp.
|
||||
|
||||
This method ensures that only relevant fields are updated instead of overwriting
|
||||
the entire document record. If `updated_at` is not provided, the database will
|
||||
automatically use the current timestamp.
|
||||
"""
|
||||
sql = """
|
||||
UPDATE LIGHTRAG_DOC_STATUS
|
||||
SET status = $3,
|
||||
chunks_count = $4,
|
||||
updated_at = CURRENT_TIMESTAMP
|
||||
WHERE workspace = $1 AND id = $2
|
||||
"""
|
||||
for k, v in data.items():
|
||||
_data = {
|
||||
"workspace": self.db.workspace,
|
||||
"id": k,
|
||||
"status": v["status"].value, # Convert Enum to string
|
||||
"chunks_count": v.get(
|
||||
"chunks_count", -1
|
||||
), # Default to -1 if not provided
|
||||
}
|
||||
await self.db.execute(sql, _data)
|
||||
|
||||
|
||||
class PGGraphQueryException(Exception):
|
||||
"""Exception for the AGE queries."""
|
||||
|
@@ -211,38 +211,65 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||
|
||||
@dataclass
|
||||
class LightRAG:
|
||||
"""LightRAG: Simple and Fast Retrieval-Augmented Generation."""
|
||||
|
||||
working_dir: str = field(
|
||||
default_factory=lambda: f'./lightrag_cache_{datetime.now().strftime("%Y-%m-%d-%H:%M:%S")}'
|
||||
)
|
||||
# Default not to use embedding cache
|
||||
embedding_cache_config: dict = field(
|
||||
"""Directory where cache and temporary files are stored."""
|
||||
|
||||
embedding_cache_config: dict[str, Any] = field(
|
||||
default_factory=lambda: {
|
||||
"enabled": False,
|
||||
"similarity_threshold": 0.95,
|
||||
"use_llm_check": False,
|
||||
}
|
||||
)
|
||||
"""Configuration for embedding cache.
|
||||
- enabled: If True, enables caching to avoid redundant computations.
|
||||
- similarity_threshold: Minimum similarity score to use cached embeddings.
|
||||
- use_llm_check: If True, validates cached embeddings using an LLM.
|
||||
"""
|
||||
|
||||
kv_storage: str = field(default="JsonKVStorage")
|
||||
"""Storage backend for key-value data."""
|
||||
|
||||
vector_storage: str = field(default="NanoVectorDBStorage")
|
||||
"""Storage backend for vector embeddings."""
|
||||
|
||||
graph_storage: str = field(default="NetworkXStorage")
|
||||
"""Storage backend for knowledge graphs."""
|
||||
|
||||
# logging
|
||||
# Logging
|
||||
current_log_level = logger.level
|
||||
log_level: str = field(default=current_log_level)
|
||||
log_level: int = field(default=current_log_level)
|
||||
"""Logging level for the system (e.g., 'DEBUG', 'INFO', 'WARNING')."""
|
||||
|
||||
log_dir: str = field(default=os.getcwd())
|
||||
"""Directory where logs are stored. Defaults to the current working directory."""
|
||||
|
||||
# text chunking
|
||||
# Text chunking
|
||||
chunk_token_size: int = 1200
|
||||
"""Maximum number of tokens per text chunk when splitting documents."""
|
||||
|
||||
chunk_overlap_token_size: int = 100
|
||||
"""Number of overlapping tokens between consecutive text chunks to preserve context."""
|
||||
|
||||
tiktoken_model_name: str = "gpt-4o-mini"
|
||||
"""Model name used for tokenization when chunking text."""
|
||||
|
||||
# entity extraction
|
||||
# Entity extraction
|
||||
entity_extract_max_gleaning: int = 1
|
||||
entity_summary_to_max_tokens: int = 500
|
||||
"""Maximum number of entity extraction attempts for ambiguous content."""
|
||||
|
||||
# node embedding
|
||||
entity_summary_to_max_tokens: int = 500
|
||||
"""Maximum number of tokens used for summarizing extracted entities."""
|
||||
|
||||
# Node embedding
|
||||
node_embedding_algorithm: str = "node2vec"
|
||||
node2vec_params: dict = field(
|
||||
"""Algorithm used for node embedding in knowledge graphs."""
|
||||
|
||||
node2vec_params: dict[str, int] = field(
|
||||
default_factory=lambda: {
|
||||
"dimensions": 1536,
|
||||
"num_walks": 10,
|
||||
@@ -252,26 +279,56 @@ class LightRAG:
|
||||
"random_seed": 3,
|
||||
}
|
||||
)
|
||||
"""Configuration for the node2vec embedding algorithm:
|
||||
- dimensions: Number of dimensions for embeddings.
|
||||
- num_walks: Number of random walks per node.
|
||||
- walk_length: Number of steps per random walk.
|
||||
- window_size: Context window size for training.
|
||||
- iterations: Number of iterations for training.
|
||||
- random_seed: Seed value for reproducibility.
|
||||
"""
|
||||
|
||||
embedding_func: EmbeddingFunc = None
|
||||
"""Function for computing text embeddings. Must be set before use."""
|
||||
|
||||
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
||||
embedding_func: EmbeddingFunc = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
|
||||
embedding_batch_num: int = 32
|
||||
"""Batch size for embedding computations."""
|
||||
|
||||
embedding_func_max_async: int = 16
|
||||
"""Maximum number of concurrent embedding function calls."""
|
||||
|
||||
# LLM Configuration
|
||||
llm_model_func: callable = None
|
||||
"""Function for interacting with the large language model (LLM). Must be set before use."""
|
||||
|
||||
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct"
|
||||
"""Name of the LLM model used for generating responses."""
|
||||
|
||||
# LLM
|
||||
llm_model_func: callable = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
|
||||
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" # 'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
||||
llm_model_max_token_size: int = int(os.getenv("MAX_TOKENS", "32768"))
|
||||
llm_model_max_async: int = int(os.getenv("MAX_ASYNC", "16"))
|
||||
llm_model_kwargs: dict = field(default_factory=dict)
|
||||
"""Maximum number of tokens allowed per LLM response."""
|
||||
|
||||
llm_model_max_async: int = int(os.getenv("MAX_ASYNC", "16"))
|
||||
"""Maximum number of concurrent LLM calls."""
|
||||
|
||||
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
||||
"""Additional keyword arguments passed to the LLM model function."""
|
||||
|
||||
# Storage
|
||||
vector_db_storage_cls_kwargs: dict[str, Any] = field(default_factory=dict)
|
||||
"""Additional parameters for vector database storage."""
|
||||
|
||||
# storage
|
||||
vector_db_storage_cls_kwargs: dict = field(default_factory=dict)
|
||||
namespace_prefix: str = field(default="")
|
||||
"""Prefix for namespacing stored data across different environments."""
|
||||
|
||||
enable_llm_cache: bool = True
|
||||
# Sometimes there are some reason the LLM failed at Extracting Entities, and we want to continue without LLM cost, we can use this flag
|
||||
"""Enables caching for LLM responses to avoid redundant computations."""
|
||||
|
||||
enable_llm_cache_for_entity_extract: bool = True
|
||||
"""If True, enables caching for entity extraction steps to reduce LLM costs."""
|
||||
|
||||
# Extensions
|
||||
addon_params: dict[str, Any] = field(default_factory=dict)
|
||||
"""Dictionary for additional parameters and extensions."""
|
||||
|
||||
# extension
|
||||
addon_params: dict[str, Any] = field(default_factory=dict)
|
||||
@@ -279,8 +336,8 @@ class LightRAG:
|
||||
convert_response_to_json
|
||||
)
|
||||
|
||||
# Add new field for document status storage type
|
||||
doc_status_storage: str = field(default="JsonDocStatusStorage")
|
||||
"""Storage type for tracking document processing statuses."""
|
||||
|
||||
# Custom Chunking Function
|
||||
chunking_func: Callable[
|
||||
@@ -799,7 +856,7 @@ class LightRAG:
|
||||
new_docs = {doc_id: new_docs[doc_id] for doc_id in unique_new_doc_ids}
|
||||
|
||||
if not new_docs:
|
||||
logger.info("All documents have been processed or are duplicates")
|
||||
logger.info("No new unique documents were found.")
|
||||
return
|
||||
|
||||
# 4. Store status document
|
||||
@@ -816,15 +873,16 @@ class LightRAG:
|
||||
each chunk for entity and relation extraction, and updating the
|
||||
document status.
|
||||
|
||||
1. Get all pending and failed documents
|
||||
1. Get all pending, failed, and abnormally terminated processing documents.
|
||||
2. Split document content into chunks
|
||||
3. Process each chunk for entity and relation extraction
|
||||
4. Update the document status
|
||||
"""
|
||||
# 1. get all pending and failed documents
|
||||
# 1. Get all pending, failed, and abnormally terminated processing documents.
|
||||
to_process_docs: dict[str, DocProcessingStatus] = {}
|
||||
|
||||
# Fetch failed documents
|
||||
processing_docs = await self.doc_status.get_processing_docs()
|
||||
to_process_docs.update(processing_docs)
|
||||
failed_docs = await self.doc_status.get_failed_docs()
|
||||
to_process_docs.update(failed_docs)
|
||||
pendings_docs = await self.doc_status.get_pending_docs()
|
||||
@@ -855,6 +913,7 @@ class LightRAG:
|
||||
doc_status_id: {
|
||||
"status": DocStatus.PROCESSING,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
@@ -886,11 +945,15 @@ class LightRAG:
|
||||
]
|
||||
try:
|
||||
await asyncio.gather(*tasks)
|
||||
await self.doc_status.upsert(
|
||||
await self.doc_status.update_doc_status(
|
||||
{
|
||||
doc_status_id: {
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
@@ -899,11 +962,15 @@ class LightRAG:
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process document {doc_id}: {str(e)}")
|
||||
await self.doc_status.upsert(
|
||||
await self.doc_status.update_doc_status(
|
||||
{
|
||||
doc_status_id: {
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
|
@@ -103,17 +103,19 @@ async def openai_complete_if_cache(
|
||||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
if api_key:
|
||||
os.environ["OPENAI_API_KEY"] = api_key
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
|
||||
default_headers = {
|
||||
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
openai_async_client = (
|
||||
AsyncOpenAI(default_headers=default_headers)
|
||||
AsyncOpenAI(default_headers=default_headers, api_key=api_key)
|
||||
if base_url is None
|
||||
else AsyncOpenAI(base_url=base_url, default_headers=default_headers)
|
||||
else AsyncOpenAI(
|
||||
base_url=base_url, default_headers=default_headers, api_key=api_key
|
||||
)
|
||||
)
|
||||
kwargs.pop("hashing_kv", None)
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
@@ -294,17 +296,19 @@ async def openai_embed(
|
||||
base_url: str = None,
|
||||
api_key: str = None,
|
||||
) -> np.ndarray:
|
||||
if api_key:
|
||||
os.environ["OPENAI_API_KEY"] = api_key
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
|
||||
default_headers = {
|
||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
openai_async_client = (
|
||||
AsyncOpenAI(default_headers=default_headers)
|
||||
AsyncOpenAI(default_headers=default_headers, api_key=api_key)
|
||||
if base_url is None
|
||||
else AsyncOpenAI(base_url=base_url, default_headers=default_headers)
|
||||
else AsyncOpenAI(
|
||||
base_url=base_url, default_headers=default_headers, api_key=api_key
|
||||
)
|
||||
)
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="float"
|
||||
|
@@ -1504,7 +1504,7 @@ async def naive_query(
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
||||
cached_response, quantized, min_val, max_val = await handle_cache(
|
||||
hashing_kv, args_hash, query, "default", cache_type="query"
|
||||
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
||||
)
|
||||
if cached_response is not None:
|
||||
return cached_response
|
||||
|
Reference in New Issue
Block a user