Compare commits

1 Commits
build ... main

Author SHA1 Message Date
8916f8a912 feat: add delete method for mongo storage implement
All checks were successful
Linting and Formatting / lint-and-format (push) Successful in 3m47s
2025-05-22 04:41:52 +08:00
15 changed files with 303 additions and 239 deletions

View File

@@ -1,29 +0,0 @@
name: Build and Push Docker Image
on:
push:
branches:
- main
- build
jobs:
build-and-push:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Registry
uses: docker/login-action@v3
with:
registry: docker.sunxinao.cn
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Build and Push Docker Image
uses: docker/build-push-action@v5
with:
context: .
file: ./Dockerfile
push: true
tags: docker.sunxinao.cn/gardel/lightrag:latest

61
.github/ISSUE_TEMPLATE/bug_report.yml vendored Normal file
View File

@@ -0,0 +1,61 @@
name: Bug Report
description: File a bug report
title: "[Bug]:"
labels: ["bug", "triage"]
body:
- type: checkboxes
id: existingcheck
attributes:
label: Do you need to file an issue?
description: Please help us manage our time by avoiding duplicates and common bugs with the steps below.
options:
- label: I have searched the existing issues and this bug is not already filed.
- label: I believe this is a legitimate bug, not just a question or feature request.
- type: textarea
id: description
attributes:
label: Describe the bug
description: A clear and concise description of what the bug is.
placeholder: What went wrong?
- type: textarea
id: reproduce
attributes:
label: Steps to reproduce
description: Steps to reproduce the behavior.
placeholder: How can we replicate the issue?
- type: textarea
id: expected_behavior
attributes:
label: Expected Behavior
description: A clear and concise description of what you expected to happen.
placeholder: What should have happened?
- type: textarea
id: configused
attributes:
label: LightRAG Config Used
description: The LightRAG configuration used for the run.
placeholder: The settings content or LightRAG configuration
value: |
# Paste your config here
- type: textarea
id: screenshotslogs
attributes:
label: Logs and screenshots
description: If applicable, add screenshots and logs to help explain your problem.
placeholder: Add logs and screenshots here
- type: textarea
id: additional_information
attributes:
label: Additional Information
description: |
- LightRAG Version: e.g., v0.1.1
- Operating System: e.g., Windows 10, Ubuntu 20.04
- Python Version: e.g., 3.8
- Related Issues: e.g., #1
- Any other relevant information.
value: |
- LightRAG Version:
- Operating System:
- Python Version:
- Related Issues:

1
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1 @@
blank_issues_enabled: false

View File

@@ -0,0 +1,26 @@
name: Feature Request
description: File a feature request
labels: ["enhancement"]
title: "[Feature Request]:"
body:
- type: checkboxes
id: existingcheck
attributes:
label: Do you need to file a feature request?
description: Please help us manage our time by avoiding duplicates and common feature request with the steps below.
options:
- label: I have searched the existing feature request and this feature request is not already filed.
- label: I believe this is a legitimate feature request, not just a question or bug.
- type: textarea
id: feature_request_description
attributes:
label: Feature Request Description
description: A clear and concise description of the feature request you would like.
placeholder: What this feature request add more or improve?
- type: textarea
id: additional_context
attributes:
label: Additional Context
description: Add any other context or screenshots about the feature request here.
placeholder: Any additional information

26
.github/ISSUE_TEMPLATE/question.yml vendored Normal file
View File

@@ -0,0 +1,26 @@
name: Question
description: Ask a general question
labels: ["question"]
title: "[Question]:"
body:
- type: checkboxes
id: existingcheck
attributes:
label: Do you need to ask a question?
description: Please help us manage our time by avoiding duplicates and common questions with the steps below.
options:
- label: I have searched the existing question and discussions and this question is not already answered.
- label: I believe this is a legitimate question, not just a bug or feature request.
- type: textarea
id: question
attributes:
label: Your Question
description: A clear and concise description of your question.
placeholder: What is your question?
- type: textarea
id: context
attributes:
label: Additional Context
description: Provide any additional context or details that might help us understand your question better.
placeholder: Add any relevant information here

11
.github/dependabot.yml vendored Normal file
View File

@@ -0,0 +1,11 @@
# To get started with Dependabot version updates, you'll need to specify which
# package ecosystems to update and where the package manifests are located.
# Please see the documentation for all configuration options:
# https://docs.github.com/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
version: 2
updates:
- package-ecosystem: "pip" # See documentation for possible values
directory: "/" # Location of package manifests
schedule:
interval: "weekly"

32
.github/pull_request_template.md vendored Normal file
View File

@@ -0,0 +1,32 @@
<!--
Thanks for contributing to LightRAG!
Please ensure your pull request is ready for review before submitting.
About this template
This template helps contributors provide a clear and concise description of their changes. Feel free to adjust it as needed.
-->
## Description
[Briefly describe the changes made in this pull request.]
## Related Issues
[Reference any related issues or tasks addressed by this pull request.]
## Changes Made
[List the specific changes made in this pull request.]
## Checklist
- [ ] Changes tested locally
- [ ] Code reviewed
- [ ] Documentation updated (if necessary)
- [ ] Unit tests added (if applicable)
## Additional Notes
[Add any additional notes or context for the reviewer(s).]

47
.github/workflows/docker-publish.yml vendored Normal file
View File

@@ -0,0 +1,47 @@
name: Build and Push Docker Image
on:
release:
types: [published]
workflow_dispatch:
permissions:
contents: read
packages: write
jobs:
build-and-push:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to GitHub Container Registry
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: ghcr.io/${{ github.repository }}
tags: |
type=semver,pattern={{version}}
type=raw,value=latest,enable={{is_default_branch}}
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: .
platforms: linux/amd64,linux/arm64
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max

30
.github/workflows/linting.yaml vendored Normal file
View File

@@ -0,0 +1,30 @@
name: Linting and Formatting
on:
push:
branches:
- main
pull_request:
branches:
- main
jobs:
lint-and-format:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.x'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pre-commit
- name: Run pre-commit
run: pre-commit run --all-files --show-diff-on-failure

52
.github/workflows/pypi-publish.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
name: Upload LightRAG-hku Package
on:
release:
types: [published]
permissions:
contents: read
jobs:
release-build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.x"
- name: Build release distributions
run: |
python -m pip install build
python -m build
- name: Upload distributions
uses: actions/upload-artifact@v4
with:
name: release-dists
path: dist/
pypi-publish:
runs-on: ubuntu-latest
needs:
- release-build
permissions:
id-token: write
environment:
name: pypi
steps:
- name: Retrieve release distributions
uses: actions/download-artifact@v4
with:
name: release-dists
path: dist/
- name: Publish release distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: dist/

View File

@@ -53,6 +53,7 @@ async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwar
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
return response
except Exception as e:

View File

@@ -1,155 +0,0 @@
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm.llama_index_impl import (
llama_index_complete_if_cache,
llama_index_embed,
)
from lightrag.utils import EmbeddingFunc
from llama_index.llms.litellm import LiteLLM
from llama_index.embeddings.litellm import LiteLLMEmbedding
import asyncio
import nest_asyncio
nest_asyncio.apply()
from lightrag.kg.shared_storage import initialize_pipeline_status
# Configure working directory
WORKING_DIR = "./index_default"
print(f"WORKING_DIR: {WORKING_DIR}")
# Model configuration
LLM_MODEL = os.environ.get("LLM_MODEL", "gemma-3-4b")
print(f"LLM_MODEL: {LLM_MODEL}")
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "arctic-embed")
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
# LiteLLM configuration
LITELLM_URL = os.environ.get("LITELLM_URL", "http://localhost:4000")
print(f"LITELLM_URL: {LITELLM_URL}")
LITELLM_KEY = os.environ.get("LITELLM_KEY", "sk-4JdvGFKqSA3S0k_5p0xufw")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
# Initialize LLM function
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
try:
# Initialize LiteLLM if not in kwargs
if "llm_instance" not in kwargs:
llm_instance = LiteLLM(
model=f"openai/{LLM_MODEL}", # Format: "provider/model_name"
api_base=LITELLM_URL,
api_key=LITELLM_KEY,
temperature=0.7,
)
kwargs["llm_instance"] = llm_instance
chat_kwargs = {}
chat_kwargs["litellm_params"] = {
"metadata": {
"opik": {
"project_name": "lightrag_llamaindex_litellm_opik_demo",
"tags": ["lightrag", "litellm"],
}
}
}
response = await llama_index_complete_if_cache(
kwargs["llm_instance"],
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
chat_kwargs=chat_kwargs,
)
return response
except Exception as e:
print(f"LLM request failed: {str(e)}")
raise
# Initialize embedding function
async def embedding_func(texts):
try:
embed_model = LiteLLMEmbedding(
model_name=f"openai/{EMBEDDING_MODEL}",
api_base=LITELLM_URL,
api_key=LITELLM_KEY,
)
return await llama_index_embed(texts, embed_model=embed_model)
except Exception as e:
print(f"Embedding failed: {str(e)}")
raise
# Get embedding dimension
async def get_embedding_dim():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
embedding_dim = embedding.shape[1]
print(f"embedding_dim={embedding_dim}")
return embedding_dim
async def initialize_rag():
embedding_dimension = await get_embedding_dim()
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
func=embedding_func,
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
# Insert example text
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Test different query modes
print("\nNaive Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
print("\nLocal Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
print("\nGlobal Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
print("\nHybrid Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
)
if __name__ == "__main__":
main()

View File

@@ -84,30 +84,22 @@ class InsertTextRequest(BaseModel):
Attributes:
text: The text content to be inserted into the RAG system
file_source: Source of the text (optional)
"""
text: str = Field(
min_length=1,
description="The text to insert",
)
file_source: str = Field(default=None, min_length=0, description="File Source")
@field_validator("text", mode="after")
@classmethod
def strip_text_after(cls, text: str) -> str:
def strip_after(cls, text: str) -> str:
return text.strip()
@field_validator("file_source", mode="after")
@classmethod
def strip_source_after(cls, file_source: str) -> str:
return file_source.strip()
class Config:
json_schema_extra = {
"example": {
"text": "This is a sample text to be inserted into the RAG system.",
"file_source": "Source of the text (optional)",
"text": "This is a sample text to be inserted into the RAG system."
}
}
@@ -117,37 +109,25 @@ class InsertTextsRequest(BaseModel):
Attributes:
texts: List of text contents to be inserted into the RAG system
file_sources: Sources of the texts (optional)
"""
texts: list[str] = Field(
min_length=1,
description="The texts to insert",
)
file_sources: list[str] = Field(
default=None, min_length=0, description="Sources of the texts"
)
@field_validator("texts", mode="after")
@classmethod
def strip_texts_after(cls, texts: list[str]) -> list[str]:
def strip_after(cls, texts: list[str]) -> list[str]:
return [text.strip() for text in texts]
@field_validator("file_sources", mode="after")
@classmethod
def strip_sources_after(cls, file_sources: list[str]) -> list[str]:
return [file_source.strip() for file_source in file_sources]
class Config:
json_schema_extra = {
"example": {
"texts": [
"This is the first text to be inserted.",
"This is the second text to be inserted.",
],
"file_sources": [
"First file source (optional)",
],
]
}
}
@@ -676,25 +656,16 @@ async def pipeline_index_files(rag: LightRAG, file_paths: List[Path]):
logger.error(traceback.format_exc())
async def pipeline_index_texts(
rag: LightRAG, texts: List[str], file_sources: List[str] = None
):
async def pipeline_index_texts(rag: LightRAG, texts: List[str]):
"""Index a list of texts
Args:
rag: LightRAG instance
texts: The texts to index
file_sources: Sources of the texts
"""
if not texts:
return
if file_sources is not None:
if len(file_sources) != 0 and len(file_sources) != len(texts):
[
file_sources.append("unknown_source")
for _ in range(len(file_sources), len(texts))
]
await rag.apipeline_enqueue_documents(input=texts, file_paths=file_sources)
await rag.apipeline_enqueue_documents(texts)
await rag.apipeline_process_enqueue_documents()
@@ -845,12 +816,7 @@ def create_document_routes(
HTTPException: If an error occurs during text processing (500).
"""
try:
background_tasks.add_task(
pipeline_index_texts,
rag,
[request.text],
file_sources=[request.file_source],
)
background_tasks.add_task(pipeline_index_texts, rag, [request.text])
return InsertResponse(
status="success",
message="Text successfully received. Processing will continue in background.",
@@ -885,12 +851,7 @@ def create_document_routes(
HTTPException: If an error occurs during text processing (500).
"""
try:
background_tasks.add_task(
pipeline_index_texts,
rag,
request.texts,
file_sources=request.file_sources,
)
background_tasks.add_task(pipeline_index_texts, rag, request.texts)
return InsertResponse(
status="success",
message="Text successfully received. Processing will continue in background.",

View File

@@ -78,10 +78,6 @@ class QueryRequest(BaseModel):
description="Number of complete conversation turns (user-assistant pairs) to consider in the response context.",
)
ids: list[str] | None = Field(
default=None, description="List of ids to filter the results."
)
user_prompt: Optional[str] = Field(
default=None,
description="User-provided prompt for the query. If provided, this will be used instead of the default value from prompt template.",

View File

@@ -95,7 +95,7 @@ async def llama_index_complete_if_cache(
prompt: str,
system_prompt: Optional[str] = None,
history_messages: List[dict] = [],
chat_kwargs={},
**kwargs,
) -> str:
"""Complete the prompt using LlamaIndex."""
try:
@@ -122,9 +122,13 @@ async def llama_index_complete_if_cache(
# Add current prompt
formatted_messages.append(ChatMessage(role=MessageRole.USER, content=prompt))
response: ChatResponse = await model.achat(
messages=formatted_messages, **chat_kwargs
)
# Get LLM instance from kwargs
if "llm_instance" not in kwargs:
raise ValueError("llm_instance must be provided in kwargs")
llm = kwargs["llm_instance"]
# Get response
response: ChatResponse = await llm.achat(messages=formatted_messages)
# In newer versions, the response is in message.content
content = response.message.content