# LightRAG: Simple and Fast Retrieval-Augmented Generation This repository hosts the code of LightRAG. The structure of this code is based on [nano-graphrag](https://github.com/gusye1234/nano-graphrag). ## Install * Install from source ``` cd LightRAG pip install -e . ``` * Install from PyPI ``` pip install lightrag-hku ``` ## Quick Start * Set OpenAI API key in environment: `export OPENAI_API_KEY="sk-...".` * Download the demo text "A Christmas Carol by Charles Dickens" ``` curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt ``` Use the below python snippet: ``` from lightrag import LightRAG, QueryParam rag = LightRAG(working_dir="./dickens") with open("./book.txt") as f: rag.insert(f.read()) # Perform naive search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))) # Perform local search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))) # Perform global search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))) # Perform hybird search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybird"))) ``` Batch Insert ``` rag.insert(["TEXT1", "TEXT2",...]) ``` Incremental Insert ``` rag = LightRAG(working_dir="./dickens") with open("./newText.txt") as f: rag.insert(f.read()) ``` ## Evaluation ### Dataset The dataset used in LightRAG can be download from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain). ### Generate Query LightRAG uses the following prompt to generate high-level queries, with the corresponding code located in `example/generate_query.py`. ``` Given the following description of a dataset: {description} Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset. Output the results in the following structure: - User 1: [user description] - Task 1: [task description] - Question 1: - Question 2: - Question 3: - Question 4: - Question 5: - Task 2: [task description] ... - Task 5: [task description] - User 2: [user description] ... - User 5: [user description] ... ``` ### Batch Eval To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in `example/batch_eval.py`. ``` ---Role--- You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**. ---Goal--- You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**. - **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question? - **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question? - **Empowerment**: How well does the answer help the reader understand and make informed judgments about the topic? For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why. Then, select an overall winner based on these three categories. Here is the question: {query} Here are the two answers: **Answer 1:** {answer1} **Answer 2:** {answer2} Evaluate both answers using the three criteria listed above and provide detailed explanations for each criterion. Output your evaluation in the following JSON format: {{ "Comprehensiveness": {{ "Winner": "[Answer 1 or Answer 2]", "Explanation": "[Provide explanation here]" }}, "Empowerment": {{ "Winner": "[Answer 1 or Answer 2]", "Explanation": "[Provide explanation here]" }}, "Overall Winner": {{ "Winner": "[Answer 1 or Answer 2]", "Explanation": "[Summarize why this answer is the overall winner based on the three criteria]" }} }} ``` ## Code Structure ``` . ├── examples │ ├── batch_eval.py │ ├── generate_query.py │ ├── insert.py │ └── query.py ├── lightrag │ ├── __init__.py │ ├── base.py │ ├── lightrag.py │ ├── llm.py │ ├── operate.py │ ├── prompt.py │ ├── storage.py │ └── utils.jpeg ├── LICENSE ├── README.md ├── requirements.txt └── setup.py ``` ## Citation ``` @article{guo2024lightrag, title={LightRAG: Simple and Fast Retrieval-Augmented Generation}, author={Zirui Guo and Lianghao Xia and Yanhua Yu and Tu Ao and Chao Huang}, year={2024}, eprint={}, archivePrefix={arXiv}, primaryClass={cs.IR} } ```